Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise
We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitat...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical imaging and vision 2022, Vol.64 (9), p.968-992 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 992 |
---|---|
container_issue | 9 |
container_start_page | 968 |
container_title | Journal of mathematical imaging and vision |
container_volume | 64 |
creator | Toader, Bogdan Boulanger, Jérôme Korolev, Yury Lenz, Martin O. Manton, James Schönlieb, Carola-Bibiane Mureşan, Leila |
description | We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196–1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal–dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods. |
doi_str_mv | 10.1007/s10851-022-01100-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730323805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7caebfcf8e6b687c39e1e989619ba5a34bf5e3472b425f9a443eccec435ef1983</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS1ERaeFP8ACRWLDxtSvxDYLJFQKrTSARIGt5XhuMq4y9tROKubf43Ta8liwsuT7neNzfRB6TslrSog8yZSommLCGCa03GD-CC1oLTmWjeKP0YJoJrDWRB6io5yvCCGKUfkEHfKGM60UWSBzsbE9VF_BxZDHNLnRx1D5UC19vx7x5RpgrD55l2J2cbt7U11u7ejtMOyqHzbtfOir97P2Jg7TrdSGVeF_wqr6HH2Gp-igs0OGZ3fnMfr-4ezb6Tlefvl4cfpuiZ2QYsTSWWg71ylo2kZJxzVQ0Eo3VLe2tly0XQ1cSNYKVnfaCsHBOXCC19BRrfgxerv33U7tBlYOwpjsYLbJb0pME603f0-CX5s-3hjZUC4lLwav7gxSvJ4gj2bjs4NhsAHilA2TnNW8IUQU9OU_6FWcUijrzRThjCtSF4rtqfnvcoLuIQwlZu7P7PszpT9z25-ZU7z4c40HyX1hBeB7IJdR6CH9fvs_tr8Ap3WnvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730323805</pqid></control><display><type>article</type><title>Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise</title><source>Springer Nature - Complete Springer Journals</source><creator>Toader, Bogdan ; Boulanger, Jérôme ; Korolev, Yury ; Lenz, Martin O. ; Manton, James ; Schönlieb, Carola-Bibiane ; Mureşan, Leila</creator><creatorcontrib>Toader, Bogdan ; Boulanger, Jérôme ; Korolev, Yury ; Lenz, Martin O. ; Manton, James ; Schönlieb, Carola-Bibiane ; Mureşan, Leila</creatorcontrib><description>We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196–1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal–dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-022-01100-3</identifier><identifier>PMID: 36329880</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Applications of Mathematics ; Computer Science ; Convolution ; Deconvolution ; Image Processing and Computer Vision ; Image reconstruction ; Inverse problems ; Light sheets ; Mathematical Methods in Physics ; Microscopy ; Point spread functions ; Random noise ; Signal,Image and Speech Processing</subject><ispartof>Journal of mathematical imaging and vision, 2022, Vol.64 (9), p.968-992</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7caebfcf8e6b687c39e1e989619ba5a34bf5e3472b425f9a443eccec435ef1983</citedby><cites>FETCH-LOGICAL-c474t-7caebfcf8e6b687c39e1e989619ba5a34bf5e3472b425f9a443eccec435ef1983</cites><orcidid>0000-0001-5444-2179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-022-01100-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-022-01100-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36329880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toader, Bogdan</creatorcontrib><creatorcontrib>Boulanger, Jérôme</creatorcontrib><creatorcontrib>Korolev, Yury</creatorcontrib><creatorcontrib>Lenz, Martin O.</creatorcontrib><creatorcontrib>Manton, James</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><creatorcontrib>Mureşan, Leila</creatorcontrib><title>Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><addtitle>J Math Imaging Vis</addtitle><description>We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196–1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal–dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Deconvolution</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Light sheets</subject><subject>Mathematical Methods in Physics</subject><subject>Microscopy</subject><subject>Point spread functions</subject><subject>Random noise</subject><subject>Signal,Image and Speech Processing</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtv1DAUhS1ERaeFP8ACRWLDxtSvxDYLJFQKrTSARIGt5XhuMq4y9tROKubf43Ta8liwsuT7neNzfRB6TslrSog8yZSommLCGCa03GD-CC1oLTmWjeKP0YJoJrDWRB6io5yvCCGKUfkEHfKGM60UWSBzsbE9VF_BxZDHNLnRx1D5UC19vx7x5RpgrD55l2J2cbt7U11u7ejtMOyqHzbtfOir97P2Jg7TrdSGVeF_wqr6HH2Gp-igs0OGZ3fnMfr-4ezb6Tlefvl4cfpuiZ2QYsTSWWg71ylo2kZJxzVQ0Eo3VLe2tly0XQ1cSNYKVnfaCsHBOXCC19BRrfgxerv33U7tBlYOwpjsYLbJb0pME603f0-CX5s-3hjZUC4lLwav7gxSvJ4gj2bjs4NhsAHilA2TnNW8IUQU9OU_6FWcUijrzRThjCtSF4rtqfnvcoLuIQwlZu7P7PszpT9z25-ZU7z4c40HyX1hBeB7IJdR6CH9fvs_tr8Ap3WnvA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Toader, Bogdan</creator><creator>Boulanger, Jérôme</creator><creator>Korolev, Yury</creator><creator>Lenz, Martin O.</creator><creator>Manton, James</creator><creator>Schönlieb, Carola-Bibiane</creator><creator>Mureşan, Leila</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5444-2179</orcidid></search><sort><creationdate>2022</creationdate><title>Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise</title><author>Toader, Bogdan ; Boulanger, Jérôme ; Korolev, Yury ; Lenz, Martin O. ; Manton, James ; Schönlieb, Carola-Bibiane ; Mureşan, Leila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7caebfcf8e6b687c39e1e989619ba5a34bf5e3472b425f9a443eccec435ef1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Deconvolution</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Light sheets</topic><topic>Mathematical Methods in Physics</topic><topic>Microscopy</topic><topic>Point spread functions</topic><topic>Random noise</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toader, Bogdan</creatorcontrib><creatorcontrib>Boulanger, Jérôme</creatorcontrib><creatorcontrib>Korolev, Yury</creatorcontrib><creatorcontrib>Lenz, Martin O.</creatorcontrib><creatorcontrib>Manton, James</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><creatorcontrib>Mureşan, Leila</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toader, Bogdan</au><au>Boulanger, Jérôme</au><au>Korolev, Yury</au><au>Lenz, Martin O.</au><au>Manton, James</au><au>Schönlieb, Carola-Bibiane</au><au>Mureşan, Leila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><addtitle>J Math Imaging Vis</addtitle><date>2022</date><risdate>2022</risdate><volume>64</volume><issue>9</issue><spage>968</spage><epage>992</epage><pages>968-992</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196–1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal–dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36329880</pmid><doi>10.1007/s10851-022-01100-3</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-5444-2179</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-9907 |
ispartof | Journal of mathematical imaging and vision, 2022, Vol.64 (9), p.968-992 |
issn | 0924-9907 1573-7683 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613773 |
source | Springer Nature - Complete Springer Journals |
subjects | Accuracy Algorithms Applications of Mathematics Computer Science Convolution Deconvolution Image Processing and Computer Vision Image reconstruction Inverse problems Light sheets Mathematical Methods in Physics Microscopy Point spread functions Random noise Signal,Image and Speech Processing |
title | Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Reconstruction%20in%20Light-Sheet%20Microscopy:%20Spatially%20Varying%20Deconvolution%20and%20Mixed%20Noise&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Toader,%20Bogdan&rft.date=2022&rft.volume=64&rft.issue=9&rft.spage=968&rft.epage=992&rft.pages=968-992&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-022-01100-3&rft_dat=%3Cproquest_pubme%3E2730323805%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730323805&rft_id=info:pmid/36329880&rfr_iscdi=true |