Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise

We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2022, Vol.64 (9), p.968-992
Hauptverfasser: Toader, Bogdan, Boulanger, Jérôme, Korolev, Yury, Lenz, Martin O., Manton, James, Schönlieb, Carola-Bibiane, Mureşan, Leila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 992
container_issue 9
container_start_page 968
container_title Journal of mathematical imaging and vision
container_volume 64
creator Toader, Bogdan
Boulanger, Jérôme
Korolev, Yury
Lenz, Martin O.
Manton, James
Schönlieb, Carola-Bibiane
Mureşan, Leila
description We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196–1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal–dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods.
doi_str_mv 10.1007/s10851-022-01100-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2730323805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7caebfcf8e6b687c39e1e989619ba5a34bf5e3472b425f9a443eccec435ef1983</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS1ERaeFP8ACRWLDxtSvxDYLJFQKrTSARIGt5XhuMq4y9tROKubf43Ta8liwsuT7neNzfRB6TslrSog8yZSommLCGCa03GD-CC1oLTmWjeKP0YJoJrDWRB6io5yvCCGKUfkEHfKGM60UWSBzsbE9VF_BxZDHNLnRx1D5UC19vx7x5RpgrD55l2J2cbt7U11u7ejtMOyqHzbtfOir97P2Jg7TrdSGVeF_wqr6HH2Gp-igs0OGZ3fnMfr-4ezb6Tlefvl4cfpuiZ2QYsTSWWg71ylo2kZJxzVQ0Eo3VLe2tly0XQ1cSNYKVnfaCsHBOXCC19BRrfgxerv33U7tBlYOwpjsYLbJb0pME603f0-CX5s-3hjZUC4lLwav7gxSvJ4gj2bjs4NhsAHilA2TnNW8IUQU9OU_6FWcUijrzRThjCtSF4rtqfnvcoLuIQwlZu7P7PszpT9z25-ZU7z4c40HyX1hBeB7IJdR6CH9fvs_tr8Ap3WnvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2730323805</pqid></control><display><type>article</type><title>Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise</title><source>Springer Nature - Complete Springer Journals</source><creator>Toader, Bogdan ; Boulanger, Jérôme ; Korolev, Yury ; Lenz, Martin O. ; Manton, James ; Schönlieb, Carola-Bibiane ; Mureşan, Leila</creator><creatorcontrib>Toader, Bogdan ; Boulanger, Jérôme ; Korolev, Yury ; Lenz, Martin O. ; Manton, James ; Schönlieb, Carola-Bibiane ; Mureşan, Leila</creatorcontrib><description>We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196–1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal–dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods.</description><identifier>ISSN: 0924-9907</identifier><identifier>EISSN: 1573-7683</identifier><identifier>DOI: 10.1007/s10851-022-01100-3</identifier><identifier>PMID: 36329880</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Applications of Mathematics ; Computer Science ; Convolution ; Deconvolution ; Image Processing and Computer Vision ; Image reconstruction ; Inverse problems ; Light sheets ; Mathematical Methods in Physics ; Microscopy ; Point spread functions ; Random noise ; Signal,Image and Speech Processing</subject><ispartof>Journal of mathematical imaging and vision, 2022, Vol.64 (9), p.968-992</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7caebfcf8e6b687c39e1e989619ba5a34bf5e3472b425f9a443eccec435ef1983</citedby><cites>FETCH-LOGICAL-c474t-7caebfcf8e6b687c39e1e989619ba5a34bf5e3472b425f9a443eccec435ef1983</cites><orcidid>0000-0001-5444-2179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10851-022-01100-3$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10851-022-01100-3$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36329880$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Toader, Bogdan</creatorcontrib><creatorcontrib>Boulanger, Jérôme</creatorcontrib><creatorcontrib>Korolev, Yury</creatorcontrib><creatorcontrib>Lenz, Martin O.</creatorcontrib><creatorcontrib>Manton, James</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><creatorcontrib>Mureşan, Leila</creatorcontrib><title>Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise</title><title>Journal of mathematical imaging and vision</title><addtitle>J Math Imaging Vis</addtitle><addtitle>J Math Imaging Vis</addtitle><description>We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196–1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal–dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Computer Science</subject><subject>Convolution</subject><subject>Deconvolution</subject><subject>Image Processing and Computer Vision</subject><subject>Image reconstruction</subject><subject>Inverse problems</subject><subject>Light sheets</subject><subject>Mathematical Methods in Physics</subject><subject>Microscopy</subject><subject>Point spread functions</subject><subject>Random noise</subject><subject>Signal,Image and Speech Processing</subject><issn>0924-9907</issn><issn>1573-7683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kUtv1DAUhS1ERaeFP8ACRWLDxtSvxDYLJFQKrTSARIGt5XhuMq4y9tROKubf43Ta8liwsuT7neNzfRB6TslrSog8yZSommLCGCa03GD-CC1oLTmWjeKP0YJoJrDWRB6io5yvCCGKUfkEHfKGM60UWSBzsbE9VF_BxZDHNLnRx1D5UC19vx7x5RpgrD55l2J2cbt7U11u7ejtMOyqHzbtfOir97P2Jg7TrdSGVeF_wqr6HH2Gp-igs0OGZ3fnMfr-4ezb6Tlefvl4cfpuiZ2QYsTSWWg71ylo2kZJxzVQ0Eo3VLe2tly0XQ1cSNYKVnfaCsHBOXCC19BRrfgxerv33U7tBlYOwpjsYLbJb0pME603f0-CX5s-3hjZUC4lLwav7gxSvJ4gj2bjs4NhsAHilA2TnNW8IUQU9OU_6FWcUijrzRThjCtSF4rtqfnvcoLuIQwlZu7P7PszpT9z25-ZU7z4c40HyX1hBeB7IJdR6CH9fvs_tr8Ap3WnvA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Toader, Bogdan</creator><creator>Boulanger, Jérôme</creator><creator>Korolev, Yury</creator><creator>Lenz, Martin O.</creator><creator>Manton, James</creator><creator>Schönlieb, Carola-Bibiane</creator><creator>Mureşan, Leila</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5444-2179</orcidid></search><sort><creationdate>2022</creationdate><title>Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise</title><author>Toader, Bogdan ; Boulanger, Jérôme ; Korolev, Yury ; Lenz, Martin O. ; Manton, James ; Schönlieb, Carola-Bibiane ; Mureşan, Leila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7caebfcf8e6b687c39e1e989619ba5a34bf5e3472b425f9a443eccec435ef1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Computer Science</topic><topic>Convolution</topic><topic>Deconvolution</topic><topic>Image Processing and Computer Vision</topic><topic>Image reconstruction</topic><topic>Inverse problems</topic><topic>Light sheets</topic><topic>Mathematical Methods in Physics</topic><topic>Microscopy</topic><topic>Point spread functions</topic><topic>Random noise</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toader, Bogdan</creatorcontrib><creatorcontrib>Boulanger, Jérôme</creatorcontrib><creatorcontrib>Korolev, Yury</creatorcontrib><creatorcontrib>Lenz, Martin O.</creatorcontrib><creatorcontrib>Manton, James</creatorcontrib><creatorcontrib>Schönlieb, Carola-Bibiane</creatorcontrib><creatorcontrib>Mureşan, Leila</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mathematical imaging and vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toader, Bogdan</au><au>Boulanger, Jérôme</au><au>Korolev, Yury</au><au>Lenz, Martin O.</au><au>Manton, James</au><au>Schönlieb, Carola-Bibiane</au><au>Mureşan, Leila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise</atitle><jtitle>Journal of mathematical imaging and vision</jtitle><stitle>J Math Imaging Vis</stitle><addtitle>J Math Imaging Vis</addtitle><date>2022</date><risdate>2022</risdate><volume>64</volume><issue>9</issue><spage>968</spage><epage>992</epage><pages>968-992</pages><issn>0924-9907</issn><eissn>1573-7683</eissn><abstract>We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image formation process that incorporates this interaction and we formulate a variational model that accounts for the combination of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities, first introduced in L. Calatroni et al. (SIAM J Imaging Sci 10(3):1196–1233, 2017). We establish convergence rates and a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal–dual hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior reconstruction results in comparison with other methods.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>36329880</pmid><doi>10.1007/s10851-022-01100-3</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-5444-2179</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0924-9907
ispartof Journal of mathematical imaging and vision, 2022, Vol.64 (9), p.968-992
issn 0924-9907
1573-7683
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7613773
source Springer Nature - Complete Springer Journals
subjects Accuracy
Algorithms
Applications of Mathematics
Computer Science
Convolution
Deconvolution
Image Processing and Computer Vision
Image reconstruction
Inverse problems
Light sheets
Mathematical Methods in Physics
Microscopy
Point spread functions
Random noise
Signal,Image and Speech Processing
title Image Reconstruction in Light-Sheet Microscopy: Spatially Varying Deconvolution and Mixed Noise
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20Reconstruction%20in%20Light-Sheet%20Microscopy:%20Spatially%20Varying%20Deconvolution%20and%20Mixed%20Noise&rft.jtitle=Journal%20of%20mathematical%20imaging%20and%20vision&rft.au=Toader,%20Bogdan&rft.date=2022&rft.volume=64&rft.issue=9&rft.spage=968&rft.epage=992&rft.pages=968-992&rft.issn=0924-9907&rft.eissn=1573-7683&rft_id=info:doi/10.1007/s10851-022-01100-3&rft_dat=%3Cproquest_pubme%3E2730323805%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2730323805&rft_id=info:pmid/36329880&rfr_iscdi=true