Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations

The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2022-07, Vol.830, p.154715-154715, Article 154715
Hauptverfasser: Kouba, Vojtěch, Hůrková, Kamila, Navrátilová, Klára, Kok, Dana, Benáková, Andrea, Laureni, Michele, Vodičková, Patricie, Podzimek, Tomáš, Lipovová, Petra, van Niftrik, Laura, Hajšlová, Jana, van Loosdrecht, Mark C.M., Weissbrodt, David Gregory, Bartáček, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154715
container_issue
container_start_page 154715
container_title The Science of the total environment
container_volume 830
creator Kouba, Vojtěch
Hůrková, Kamila
Navrátilová, Klára
Kok, Dana
Benáková, Andrea
Laureni, Michele
Vodičková, Patricie
Podzimek, Tomáš
Lipovová, Petra
van Niftrik, Laura
Hajšlová, Jana
van Loosdrecht, Mark C.M.
Weissbrodt, David Gregory
Bartáček, Jan
description The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC–HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10–37 °C. “Candidatus Brocadia” appeared to be the dominant organism in all but two laboratory enrichments of “Ca. Scalindua” and “Ca. Kuenenia”. At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. “Ca. Scalindua” and “Ca. Kuenenia” had distinct profile of ladderane lipids compared to “Ca. Brocadia” biomasses with potential implications for adaptability to low temperatures. “Ca. Brocadia” membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for “Ca. Scalindua” at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of “Ca. Scalindua” in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments. [Display omitted] •The survey involved 14 anammox lab enrichments and biomasses from WWTPs.•Dominant anammox populations in WWTPs belonged to the genus “Ca. Brocadia”.•Ladderanes correlated with cultivation temperature and anammox populations.•Promising ladderane adaptation mechanisms were alkyl length, phosphatidyl content.
doi_str_mv 10.1016/j.scitotenv.2022.154715
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612979</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969722018083</els_id><sourcerecordid>2644004175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-296e53bff68726dee0c94b9f89274db62e227499c6ae7e1cdfbb2e76491b8cbe3</originalsourceid><addsrcrecordid>eNqFkUFvFCEUx4nR2G31KyhHL7MOzAwMF5OmqdqkiRc9EwYeLRsGRmA27rcv69aNnuQCCb_3f_B-CL0n7Za0hH3cbbN2JRYI-y1tKd2SoedkeIE2ZOSiIS1lL9GmbfuxEUzwC3SZ866ti4_kNbrohq7jI-s3yN5aC7rgaHGBeYGkypoAx4DLI2Ad5yVmV1wM-Yh4ZUxFAmDvFmcydgE_-Dgp7w84r2kPBzBYBTXP8Rde4rJ69bv4DXpllc_w9nm_Qj8-336_-drcf_tyd3N93-ieD6WhgsHQTdaykVNmAFot-knYUVDem4lRoPUghGYKOBBt7DRR4KwXZBr1BN0V-nTKXdZpBqMhlKS8XJKbVTrIqJz89ya4R_kQ95IzQgUXNeDDc0CKP1fIRc4ua_C-fjquWVLW93WshA8V5SdUp5hzAntuQ1p5tCR38mxJHi3Jk6Va-e7vV57r_mipwPUJgDqrvYN0DIKgwbhUbUkT3X-bPAEqYaxc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644004175</pqid></control><display><type>article</type><title>Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Kouba, Vojtěch ; Hůrková, Kamila ; Navrátilová, Klára ; Kok, Dana ; Benáková, Andrea ; Laureni, Michele ; Vodičková, Patricie ; Podzimek, Tomáš ; Lipovová, Petra ; van Niftrik, Laura ; Hajšlová, Jana ; van Loosdrecht, Mark C.M. ; Weissbrodt, David Gregory ; Bartáček, Jan</creator><creatorcontrib>Kouba, Vojtěch ; Hůrková, Kamila ; Navrátilová, Klára ; Kok, Dana ; Benáková, Andrea ; Laureni, Michele ; Vodičková, Patricie ; Podzimek, Tomáš ; Lipovová, Petra ; van Niftrik, Laura ; Hajšlová, Jana ; van Loosdrecht, Mark C.M. ; Weissbrodt, David Gregory ; Bartáček, Jan</creatorcontrib><description>The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC–HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10–37 °C. “Candidatus Brocadia” appeared to be the dominant organism in all but two laboratory enrichments of “Ca. Scalindua” and “Ca. Kuenenia”. At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. “Ca. Scalindua” and “Ca. Kuenenia” had distinct profile of ladderane lipids compared to “Ca. Brocadia” biomasses with potential implications for adaptability to low temperatures. “Ca. Brocadia” membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for “Ca. Scalindua” at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of “Ca. Scalindua” in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments. [Display omitted] •The survey involved 14 anammox lab enrichments and biomasses from WWTPs.•Dominant anammox populations in WWTPs belonged to the genus “Ca. Brocadia”.•Ladderanes correlated with cultivation temperature and anammox populations.•Promising ladderane adaptation mechanisms were alkyl length, phosphatidyl content.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2022.154715</identifier><identifier>PMID: 35337864</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Anaerobic Ammonia Oxidation ; Anaerobic ammonium oxidation ; Anaerobiosis ; Bacteria ; Candidatus Brocadia ; Candidatus Scalindua ; Effect of temperature ; In Situ Hybridization, Fluorescence ; Ladderane phospholipids ; Membrane Lipids ; Oxidation-Reduction ; RNA, Ribosomal, 16S - genetics ; Temperature</subject><ispartof>The Science of the total environment, 2022-07, Vol.830, p.154715-154715, Article 154715</ispartof><rights>2022 Elsevier B.V.</rights><rights>Copyright © 2022 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-296e53bff68726dee0c94b9f89274db62e227499c6ae7e1cdfbb2e76491b8cbe3</citedby><cites>FETCH-LOGICAL-c475t-296e53bff68726dee0c94b9f89274db62e227499c6ae7e1cdfbb2e76491b8cbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scitotenv.2022.154715$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35337864$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kouba, Vojtěch</creatorcontrib><creatorcontrib>Hůrková, Kamila</creatorcontrib><creatorcontrib>Navrátilová, Klára</creatorcontrib><creatorcontrib>Kok, Dana</creatorcontrib><creatorcontrib>Benáková, Andrea</creatorcontrib><creatorcontrib>Laureni, Michele</creatorcontrib><creatorcontrib>Vodičková, Patricie</creatorcontrib><creatorcontrib>Podzimek, Tomáš</creatorcontrib><creatorcontrib>Lipovová, Petra</creatorcontrib><creatorcontrib>van Niftrik, Laura</creatorcontrib><creatorcontrib>Hajšlová, Jana</creatorcontrib><creatorcontrib>van Loosdrecht, Mark C.M.</creatorcontrib><creatorcontrib>Weissbrodt, David Gregory</creatorcontrib><creatorcontrib>Bartáček, Jan</creatorcontrib><title>Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC–HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10–37 °C. “Candidatus Brocadia” appeared to be the dominant organism in all but two laboratory enrichments of “Ca. Scalindua” and “Ca. Kuenenia”. At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. “Ca. Scalindua” and “Ca. Kuenenia” had distinct profile of ladderane lipids compared to “Ca. Brocadia” biomasses with potential implications for adaptability to low temperatures. “Ca. Brocadia” membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for “Ca. Scalindua” at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of “Ca. Scalindua” in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments. [Display omitted] •The survey involved 14 anammox lab enrichments and biomasses from WWTPs.•Dominant anammox populations in WWTPs belonged to the genus “Ca. Brocadia”.•Ladderanes correlated with cultivation temperature and anammox populations.•Promising ladderane adaptation mechanisms were alkyl length, phosphatidyl content.</description><subject>Anaerobic Ammonia Oxidation</subject><subject>Anaerobic ammonium oxidation</subject><subject>Anaerobiosis</subject><subject>Bacteria</subject><subject>Candidatus Brocadia</subject><subject>Candidatus Scalindua</subject><subject>Effect of temperature</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Ladderane phospholipids</subject><subject>Membrane Lipids</subject><subject>Oxidation-Reduction</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>Temperature</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFvFCEUx4nR2G31KyhHL7MOzAwMF5OmqdqkiRc9EwYeLRsGRmA27rcv69aNnuQCCb_3f_B-CL0n7Za0hH3cbbN2JRYI-y1tKd2SoedkeIE2ZOSiIS1lL9GmbfuxEUzwC3SZ866ti4_kNbrohq7jI-s3yN5aC7rgaHGBeYGkypoAx4DLI2Ad5yVmV1wM-Yh4ZUxFAmDvFmcydgE_-Dgp7w84r2kPBzBYBTXP8Rde4rJ69bv4DXpllc_w9nm_Qj8-336_-drcf_tyd3N93-ieD6WhgsHQTdaykVNmAFot-knYUVDem4lRoPUghGYKOBBt7DRR4KwXZBr1BN0V-nTKXdZpBqMhlKS8XJKbVTrIqJz89ya4R_kQ95IzQgUXNeDDc0CKP1fIRc4ua_C-fjquWVLW93WshA8V5SdUp5hzAntuQ1p5tCR38mxJHi3Jk6Va-e7vV57r_mipwPUJgDqrvYN0DIKgwbhUbUkT3X-bPAEqYaxc</recordid><startdate>20220715</startdate><enddate>20220715</enddate><creator>Kouba, Vojtěch</creator><creator>Hůrková, Kamila</creator><creator>Navrátilová, Klára</creator><creator>Kok, Dana</creator><creator>Benáková, Andrea</creator><creator>Laureni, Michele</creator><creator>Vodičková, Patricie</creator><creator>Podzimek, Tomáš</creator><creator>Lipovová, Petra</creator><creator>van Niftrik, Laura</creator><creator>Hajšlová, Jana</creator><creator>van Loosdrecht, Mark C.M.</creator><creator>Weissbrodt, David Gregory</creator><creator>Bartáček, Jan</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20220715</creationdate><title>Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations</title><author>Kouba, Vojtěch ; Hůrková, Kamila ; Navrátilová, Klára ; Kok, Dana ; Benáková, Andrea ; Laureni, Michele ; Vodičková, Patricie ; Podzimek, Tomáš ; Lipovová, Petra ; van Niftrik, Laura ; Hajšlová, Jana ; van Loosdrecht, Mark C.M. ; Weissbrodt, David Gregory ; Bartáček, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-296e53bff68726dee0c94b9f89274db62e227499c6ae7e1cdfbb2e76491b8cbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Anaerobic Ammonia Oxidation</topic><topic>Anaerobic ammonium oxidation</topic><topic>Anaerobiosis</topic><topic>Bacteria</topic><topic>Candidatus Brocadia</topic><topic>Candidatus Scalindua</topic><topic>Effect of temperature</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Ladderane phospholipids</topic><topic>Membrane Lipids</topic><topic>Oxidation-Reduction</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kouba, Vojtěch</creatorcontrib><creatorcontrib>Hůrková, Kamila</creatorcontrib><creatorcontrib>Navrátilová, Klára</creatorcontrib><creatorcontrib>Kok, Dana</creatorcontrib><creatorcontrib>Benáková, Andrea</creatorcontrib><creatorcontrib>Laureni, Michele</creatorcontrib><creatorcontrib>Vodičková, Patricie</creatorcontrib><creatorcontrib>Podzimek, Tomáš</creatorcontrib><creatorcontrib>Lipovová, Petra</creatorcontrib><creatorcontrib>van Niftrik, Laura</creatorcontrib><creatorcontrib>Hajšlová, Jana</creatorcontrib><creatorcontrib>van Loosdrecht, Mark C.M.</creatorcontrib><creatorcontrib>Weissbrodt, David Gregory</creatorcontrib><creatorcontrib>Bartáček, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kouba, Vojtěch</au><au>Hůrková, Kamila</au><au>Navrátilová, Klára</au><au>Kok, Dana</au><au>Benáková, Andrea</au><au>Laureni, Michele</au><au>Vodičková, Patricie</au><au>Podzimek, Tomáš</au><au>Lipovová, Petra</au><au>van Niftrik, Laura</au><au>Hajšlová, Jana</au><au>van Loosdrecht, Mark C.M.</au><au>Weissbrodt, David Gregory</au><au>Bartáček, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2022-07-15</date><risdate>2022</risdate><volume>830</volume><spage>154715</spage><epage>154715</epage><pages>154715-154715</pages><artnum>154715</artnum><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>The adaptation of bacteria involved in anaerobic ammonium oxidation (anammox) to low temperatures will enable more efficient removal of nitrogen from sewage across seasons. At lower temperatures, bacteria typically tune the synthesis of their membrane lipids to promote membrane fluidity. However, such adaptation of anammox bacteria lipids, including unique ladderane phospholipids and especially shorter ladderanes with absent phosphatidyl headgroup, is yet to be described in detail. We investigated the membrane lipids composition (UPLC–HRMS/MS) and dominant anammox populations (16S rRNA gene amplicon sequencing, Fluorescence in situ hybridization) in 14 anammox enrichments cultivated at 10–37 °C. “Candidatus Brocadia” appeared to be the dominant organism in all but two laboratory enrichments of “Ca. Scalindua” and “Ca. Kuenenia”. At lower temperatures, the membranes of all anammox populations were composed of shorter [5]-ladderane ester (reduced chain length demonstrated by decreased fraction of C20/(C18 + C20)). This confirmed the previous preliminary evidence on the prominent role of this ladderane fatty acid in low-temperature adaptation. “Ca. Scalindua” and “Ca. Kuenenia” had distinct profile of ladderane lipids compared to “Ca. Brocadia” biomasses with potential implications for adaptability to low temperatures. “Ca. Brocadia” membranes contained a much lower amount of C18 [5]-ladderane esters than reported in the literature for “Ca. Scalindua” at similar temperature and measured here, suggesting that this could be one of the reasons for the dominance of “Ca. Scalindua” in cold marine environments. Furthermore, we propose additional and yet unreported mechanisms for low-temperature adaptation of anammox bacteria, one of which involves ladderanes with absent phosphatidyl headgroup. In sum, we deepen the understanding of cold anammox physiology by providing for the first time a consistent comparison of anammox-based communities across multiple environments. [Display omitted] •The survey involved 14 anammox lab enrichments and biomasses from WWTPs.•Dominant anammox populations in WWTPs belonged to the genus “Ca. Brocadia”.•Ladderanes correlated with cultivation temperature and anammox populations.•Promising ladderane adaptation mechanisms were alkyl length, phosphatidyl content.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35337864</pmid><doi>10.1016/j.scitotenv.2022.154715</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2022-07, Vol.830, p.154715-154715, Article 154715
issn 0048-9697
1879-1026
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612979
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Anaerobic Ammonia Oxidation
Anaerobic ammonium oxidation
Anaerobiosis
Bacteria
Candidatus Brocadia
Candidatus Scalindua
Effect of temperature
In Situ Hybridization, Fluorescence
Ladderane phospholipids
Membrane Lipids
Oxidation-Reduction
RNA, Ribosomal, 16S - genetics
Temperature
title Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T12%3A13%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20temperature%20on%20the%20compositions%20of%20ladderane%20lipids%20in%20globally%20surveyed%20anammox%20populations&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Kouba,%20Vojt%C4%9Bch&rft.date=2022-07-15&rft.volume=830&rft.spage=154715&rft.epage=154715&rft.pages=154715-154715&rft.artnum=154715&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2022.154715&rft_dat=%3Cproquest_pubme%3E2644004175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644004175&rft_id=info:pmid/35337864&rft_els_id=S0048969722018083&rfr_iscdi=true