Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α‑Synuclein and Polyglutamine in Aging Caenorhabditis elegans

The nematode worm Caenorhabditis elegans has emerged as an important model organism in the study of the molecular mechanisms of protein misfolding diseases associated with amyloid formation because of its small size, ease of genetic manipulation, and optical transparency. Obtaining a reliable and qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2019-07, Vol.14 (7), p.1628-1636
Hauptverfasser: Laine, Romain F, Sinnige, Tessa, Ma, Kai Yu, Haack, Amanda J, Poudel, Chetan, Gaida, Peter, Curry, Nathan, Perni, Michele, Nollen, Ellen A.A, Dobson, Christopher M, Vendruscolo, Michele, Kaminski Schierle, Gabriele S, Kaminski, Clemens F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1636
container_issue 7
container_start_page 1628
container_title ACS chemical biology
container_volume 14
creator Laine, Romain F
Sinnige, Tessa
Ma, Kai Yu
Haack, Amanda J
Poudel, Chetan
Gaida, Peter
Curry, Nathan
Perni, Michele
Nollen, Ellen A.A
Dobson, Christopher M
Vendruscolo, Michele
Kaminski Schierle, Gabriele S
Kaminski, Clemens F
description The nematode worm Caenorhabditis elegans has emerged as an important model organism in the study of the molecular mechanisms of protein misfolding diseases associated with amyloid formation because of its small size, ease of genetic manipulation, and optical transparency. Obtaining a reliable and quantitative read-out of protein aggregation in this system, however, remains a challenge. To address this problem, we here present a fast time-gated fluorescence lifetime imaging (TG-FLIM) method and show that it provides functional insights into the process of protein aggregation in living animals by enabling the rapid characterization of different types of aggregates. Specifically, in longitudinal studies of C. elegans models of Parkinson’s and Huntington’s diseases, we observed marked differences in the aggregation kinetics and the nature of the protein inclusions formed by α-synuclein and polyglutamine. In particular, we found that α-synuclein inclusions do not display amyloid-like features until late in the life of the worms, whereas polyglutamine forms amyloid characteristics rapidly in early adulthood. Furthermore, we show that the TG-FLIM method is capable of imaging live and non-anaesthetized worms moving in specially designed agarose microchambers. Taken together, our results show that the TG-FLIM method enables high-throughput functional imaging of living C. elegans that can be used to study in vivo mechanisms of protein aggregation and that has the potential to aid the search for therapeutic modifiers of protein aggregation and toxicity.
doi_str_mv 10.1021/acschembio.9b00354
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2250644730</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-5fc94dffc75940d67f86e91a1a66baabd9fb3b3f2cceb953f5cba32fb44521303</originalsourceid><addsrcrecordid>eNp9kU9uEzEYxUeIipbCBVggL9kk-O9MvEGKIgKVIlEVWFu25_PE1Yxd7JlK2bFky1G4CIfgJJgmDXTDypb93u_Z36uqFwTPCabktbbZbmEwPs6lwZgJ_qg6I0Lw2UKy5vFxT-Vp9TTna4w5qxfySXXKCOU1J-Ks-rbWeUTrfooJsoVgAW28g9EPgC4G3fnQoSu4Bd1nNG4BLbsuQadHHwO6TNFCzpBRdOjnj19fv3_chcn24APSoUWXsd91_TTqwQdA5XB5h1tpCDFttWn96DOCvvBCfladuBICzw_refV5_fbT6v1s8-HdxWq5mWnOyTgTzkreOmcbITlu68YtapBEE13XRhemdIYZ5qi1YKRgTlijGXWGc0EJw-y8erPn3kxmgLZ8eUy6VzfJDzrtVNRePbwJfqu6eKuamlDZNAXw6gBI8csEeVSDL5Prex0gTllRKnDNeXOXRfdSm2LOCdwxhmD1p0L1t0J1qLCYXv77wKPlvrMimO8Fxayu45RCmdf_iL8BHaqwiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2250644730</pqid></control><display><type>article</type><title>Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α‑Synuclein and Polyglutamine in Aging Caenorhabditis elegans</title><source>MEDLINE</source><source>ACS Publications</source><creator>Laine, Romain F ; Sinnige, Tessa ; Ma, Kai Yu ; Haack, Amanda J ; Poudel, Chetan ; Gaida, Peter ; Curry, Nathan ; Perni, Michele ; Nollen, Ellen A.A ; Dobson, Christopher M ; Vendruscolo, Michele ; Kaminski Schierle, Gabriele S ; Kaminski, Clemens F</creator><creatorcontrib>Laine, Romain F ; Sinnige, Tessa ; Ma, Kai Yu ; Haack, Amanda J ; Poudel, Chetan ; Gaida, Peter ; Curry, Nathan ; Perni, Michele ; Nollen, Ellen A.A ; Dobson, Christopher M ; Vendruscolo, Michele ; Kaminski Schierle, Gabriele S ; Kaminski, Clemens F</creatorcontrib><description>The nematode worm Caenorhabditis elegans has emerged as an important model organism in the study of the molecular mechanisms of protein misfolding diseases associated with amyloid formation because of its small size, ease of genetic manipulation, and optical transparency. Obtaining a reliable and quantitative read-out of protein aggregation in this system, however, remains a challenge. To address this problem, we here present a fast time-gated fluorescence lifetime imaging (TG-FLIM) method and show that it provides functional insights into the process of protein aggregation in living animals by enabling the rapid characterization of different types of aggregates. Specifically, in longitudinal studies of C. elegans models of Parkinson’s and Huntington’s diseases, we observed marked differences in the aggregation kinetics and the nature of the protein inclusions formed by α-synuclein and polyglutamine. In particular, we found that α-synuclein inclusions do not display amyloid-like features until late in the life of the worms, whereas polyglutamine forms amyloid characteristics rapidly in early adulthood. Furthermore, we show that the TG-FLIM method is capable of imaging live and non-anaesthetized worms moving in specially designed agarose microchambers. Taken together, our results show that the TG-FLIM method enables high-throughput functional imaging of living C. elegans that can be used to study in vivo mechanisms of protein aggregation and that has the potential to aid the search for therapeutic modifiers of protein aggregation and toxicity.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.9b00354</identifier><identifier>PMID: 31246415</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aging ; alpha-Synuclein - analysis ; alpha-Synuclein - metabolism ; Amyloid - chemistry ; Amyloid - metabolism ; Animals ; Caenorhabditis elegans - physiology ; Caenorhabditis elegans Proteins - analysis ; Caenorhabditis elegans Proteins - metabolism ; Optical Imaging ; Peptides - analysis ; Peptides - metabolism ; Protein Aggregates</subject><ispartof>ACS chemical biology, 2019-07, Vol.14 (7), p.1628-1636</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-5fc94dffc75940d67f86e91a1a66baabd9fb3b3f2cceb953f5cba32fb44521303</citedby><cites>FETCH-LOGICAL-a441t-5fc94dffc75940d67f86e91a1a66baabd9fb3b3f2cceb953f5cba32fb44521303</cites><orcidid>0000-0002-9353-126X ; 0000-0002-3616-1610 ; 0000-0001-7593-8376 ; 0000-0002-1843-2202 ; 0000-0002-8512-9238 ; 0000-0002-5194-0962 ; 0000-0002-2151-4487</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.9b00354$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.9b00354$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31246415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Laine, Romain F</creatorcontrib><creatorcontrib>Sinnige, Tessa</creatorcontrib><creatorcontrib>Ma, Kai Yu</creatorcontrib><creatorcontrib>Haack, Amanda J</creatorcontrib><creatorcontrib>Poudel, Chetan</creatorcontrib><creatorcontrib>Gaida, Peter</creatorcontrib><creatorcontrib>Curry, Nathan</creatorcontrib><creatorcontrib>Perni, Michele</creatorcontrib><creatorcontrib>Nollen, Ellen A.A</creatorcontrib><creatorcontrib>Dobson, Christopher M</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Kaminski Schierle, Gabriele S</creatorcontrib><creatorcontrib>Kaminski, Clemens F</creatorcontrib><title>Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α‑Synuclein and Polyglutamine in Aging Caenorhabditis elegans</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>The nematode worm Caenorhabditis elegans has emerged as an important model organism in the study of the molecular mechanisms of protein misfolding diseases associated with amyloid formation because of its small size, ease of genetic manipulation, and optical transparency. Obtaining a reliable and quantitative read-out of protein aggregation in this system, however, remains a challenge. To address this problem, we here present a fast time-gated fluorescence lifetime imaging (TG-FLIM) method and show that it provides functional insights into the process of protein aggregation in living animals by enabling the rapid characterization of different types of aggregates. Specifically, in longitudinal studies of C. elegans models of Parkinson’s and Huntington’s diseases, we observed marked differences in the aggregation kinetics and the nature of the protein inclusions formed by α-synuclein and polyglutamine. In particular, we found that α-synuclein inclusions do not display amyloid-like features until late in the life of the worms, whereas polyglutamine forms amyloid characteristics rapidly in early adulthood. Furthermore, we show that the TG-FLIM method is capable of imaging live and non-anaesthetized worms moving in specially designed agarose microchambers. Taken together, our results show that the TG-FLIM method enables high-throughput functional imaging of living C. elegans that can be used to study in vivo mechanisms of protein aggregation and that has the potential to aid the search for therapeutic modifiers of protein aggregation and toxicity.</description><subject>Aging</subject><subject>alpha-Synuclein - analysis</subject><subject>alpha-Synuclein - metabolism</subject><subject>Amyloid - chemistry</subject><subject>Amyloid - metabolism</subject><subject>Animals</subject><subject>Caenorhabditis elegans - physiology</subject><subject>Caenorhabditis elegans Proteins - analysis</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Optical Imaging</subject><subject>Peptides - analysis</subject><subject>Peptides - metabolism</subject><subject>Protein Aggregates</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9uEzEYxUeIipbCBVggL9kk-O9MvEGKIgKVIlEVWFu25_PE1Yxd7JlK2bFky1G4CIfgJJgmDXTDypb93u_Z36uqFwTPCabktbbZbmEwPs6lwZgJ_qg6I0Lw2UKy5vFxT-Vp9TTna4w5qxfySXXKCOU1J-Ks-rbWeUTrfooJsoVgAW28g9EPgC4G3fnQoSu4Bd1nNG4BLbsuQadHHwO6TNFCzpBRdOjnj19fv3_chcn24APSoUWXsd91_TTqwQdA5XB5h1tpCDFttWn96DOCvvBCfladuBICzw_refV5_fbT6v1s8-HdxWq5mWnOyTgTzkreOmcbITlu68YtapBEE13XRhemdIYZ5qi1YKRgTlijGXWGc0EJw-y8erPn3kxmgLZ8eUy6VzfJDzrtVNRePbwJfqu6eKuamlDZNAXw6gBI8csEeVSDL5Prex0gTllRKnDNeXOXRfdSm2LOCdwxhmD1p0L1t0J1qLCYXv77wKPlvrMimO8Fxayu45RCmdf_iL8BHaqwiQ</recordid><startdate>20190719</startdate><enddate>20190719</enddate><creator>Laine, Romain F</creator><creator>Sinnige, Tessa</creator><creator>Ma, Kai Yu</creator><creator>Haack, Amanda J</creator><creator>Poudel, Chetan</creator><creator>Gaida, Peter</creator><creator>Curry, Nathan</creator><creator>Perni, Michele</creator><creator>Nollen, Ellen A.A</creator><creator>Dobson, Christopher M</creator><creator>Vendruscolo, Michele</creator><creator>Kaminski Schierle, Gabriele S</creator><creator>Kaminski, Clemens F</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9353-126X</orcidid><orcidid>https://orcid.org/0000-0002-3616-1610</orcidid><orcidid>https://orcid.org/0000-0001-7593-8376</orcidid><orcidid>https://orcid.org/0000-0002-1843-2202</orcidid><orcidid>https://orcid.org/0000-0002-8512-9238</orcidid><orcidid>https://orcid.org/0000-0002-5194-0962</orcidid><orcidid>https://orcid.org/0000-0002-2151-4487</orcidid></search><sort><creationdate>20190719</creationdate><title>Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α‑Synuclein and Polyglutamine in Aging Caenorhabditis elegans</title><author>Laine, Romain F ; Sinnige, Tessa ; Ma, Kai Yu ; Haack, Amanda J ; Poudel, Chetan ; Gaida, Peter ; Curry, Nathan ; Perni, Michele ; Nollen, Ellen A.A ; Dobson, Christopher M ; Vendruscolo, Michele ; Kaminski Schierle, Gabriele S ; Kaminski, Clemens F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-5fc94dffc75940d67f86e91a1a66baabd9fb3b3f2cceb953f5cba32fb44521303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aging</topic><topic>alpha-Synuclein - analysis</topic><topic>alpha-Synuclein - metabolism</topic><topic>Amyloid - chemistry</topic><topic>Amyloid - metabolism</topic><topic>Animals</topic><topic>Caenorhabditis elegans - physiology</topic><topic>Caenorhabditis elegans Proteins - analysis</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Optical Imaging</topic><topic>Peptides - analysis</topic><topic>Peptides - metabolism</topic><topic>Protein Aggregates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laine, Romain F</creatorcontrib><creatorcontrib>Sinnige, Tessa</creatorcontrib><creatorcontrib>Ma, Kai Yu</creatorcontrib><creatorcontrib>Haack, Amanda J</creatorcontrib><creatorcontrib>Poudel, Chetan</creatorcontrib><creatorcontrib>Gaida, Peter</creatorcontrib><creatorcontrib>Curry, Nathan</creatorcontrib><creatorcontrib>Perni, Michele</creatorcontrib><creatorcontrib>Nollen, Ellen A.A</creatorcontrib><creatorcontrib>Dobson, Christopher M</creatorcontrib><creatorcontrib>Vendruscolo, Michele</creatorcontrib><creatorcontrib>Kaminski Schierle, Gabriele S</creatorcontrib><creatorcontrib>Kaminski, Clemens F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laine, Romain F</au><au>Sinnige, Tessa</au><au>Ma, Kai Yu</au><au>Haack, Amanda J</au><au>Poudel, Chetan</au><au>Gaida, Peter</au><au>Curry, Nathan</au><au>Perni, Michele</au><au>Nollen, Ellen A.A</au><au>Dobson, Christopher M</au><au>Vendruscolo, Michele</au><au>Kaminski Schierle, Gabriele S</au><au>Kaminski, Clemens F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α‑Synuclein and Polyglutamine in Aging Caenorhabditis elegans</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2019-07-19</date><risdate>2019</risdate><volume>14</volume><issue>7</issue><spage>1628</spage><epage>1636</epage><pages>1628-1636</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>The nematode worm Caenorhabditis elegans has emerged as an important model organism in the study of the molecular mechanisms of protein misfolding diseases associated with amyloid formation because of its small size, ease of genetic manipulation, and optical transparency. Obtaining a reliable and quantitative read-out of protein aggregation in this system, however, remains a challenge. To address this problem, we here present a fast time-gated fluorescence lifetime imaging (TG-FLIM) method and show that it provides functional insights into the process of protein aggregation in living animals by enabling the rapid characterization of different types of aggregates. Specifically, in longitudinal studies of C. elegans models of Parkinson’s and Huntington’s diseases, we observed marked differences in the aggregation kinetics and the nature of the protein inclusions formed by α-synuclein and polyglutamine. In particular, we found that α-synuclein inclusions do not display amyloid-like features until late in the life of the worms, whereas polyglutamine forms amyloid characteristics rapidly in early adulthood. Furthermore, we show that the TG-FLIM method is capable of imaging live and non-anaesthetized worms moving in specially designed agarose microchambers. Taken together, our results show that the TG-FLIM method enables high-throughput functional imaging of living C. elegans that can be used to study in vivo mechanisms of protein aggregation and that has the potential to aid the search for therapeutic modifiers of protein aggregation and toxicity.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>31246415</pmid><doi>10.1021/acschembio.9b00354</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9353-126X</orcidid><orcidid>https://orcid.org/0000-0002-3616-1610</orcidid><orcidid>https://orcid.org/0000-0001-7593-8376</orcidid><orcidid>https://orcid.org/0000-0002-1843-2202</orcidid><orcidid>https://orcid.org/0000-0002-8512-9238</orcidid><orcidid>https://orcid.org/0000-0002-5194-0962</orcidid><orcidid>https://orcid.org/0000-0002-2151-4487</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2019-07, Vol.14 (7), p.1628-1636
issn 1554-8929
1554-8937
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612977
source MEDLINE; ACS Publications
subjects Aging
alpha-Synuclein - analysis
alpha-Synuclein - metabolism
Amyloid - chemistry
Amyloid - metabolism
Animals
Caenorhabditis elegans - physiology
Caenorhabditis elegans Proteins - analysis
Caenorhabditis elegans Proteins - metabolism
Optical Imaging
Peptides - analysis
Peptides - metabolism
Protein Aggregates
title Fast Fluorescence Lifetime Imaging Reveals the Aggregation Processes of α‑Synuclein and Polyglutamine in Aging Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T01%3A50%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Fluorescence%20Lifetime%20Imaging%20Reveals%20the%20Aggregation%20Processes%20of%20%CE%B1%E2%80%91Synuclein%20and%20Polyglutamine%20in%20Aging%20Caenorhabditis%20elegans&rft.jtitle=ACS%20chemical%20biology&rft.au=Laine,%20Romain%20F&rft.date=2019-07-19&rft.volume=14&rft.issue=7&rft.spage=1628&rft.epage=1636&rft.pages=1628-1636&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.9b00354&rft_dat=%3Cproquest_pubme%3E2250644730%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2250644730&rft_id=info:pmid/31246415&rfr_iscdi=true