Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
Summary Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We de...
Gespeichert in:
Veröffentlicht in: | Biometrika 2020-12, Vol.107 (4), p.857-873 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 873 |
---|---|
container_issue | 4 |
container_start_page | 857 |
container_title | Biometrika |
container_volume | 107 |
creator | Yiu, A Goudie, R J B Tom, B D M |
description | Summary
Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria. |
doi_str_mv | 10.1093/biomet/asaa028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa028</oup_id><sourcerecordid>2476152197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-af24eb2454021be4ecb07e06cfb39e3150eadd169828a2f7aa2d6cdad6892cbc3</originalsourceid><addsrcrecordid>eNqFkU2L1TAUhoMoznV061IKbnTRmXw1bTeCDn4MDLjRdThJT6cZ06STtOr992a410HdSCDhcJ48nMNLyHNGzxjtxblxccb1HDIA5d0DsmNSyVo0jD4kO0qpqoWU8oQ8yfnmrlSNekxOhOx7LqjckekyjJgwWKy2MGAqN95u4KslRQPGebfuqwzz4l24rn64darWCat3sMfsIFT4c4kBw-rA-321Or_iUOG8uORssXj3Db2bYhyekkcj-IzPju8p-frh_ZeLT_XV54-XF2-vaisbvtYwcomGy0ZSzgxKtIa2SJUdjehRsIYiDANTfcc74GMLwAdlBxhU13NrrDglbw7eZTMzDrbMlsDrJbkZ0l5HcPrvTnCTvo7fdasYZ60ogldHQYq3G-ZVzy5b9B4Cxi1rrljHRTmsoC__QW_ilkJZT3NZfA1nfVuoswNlU8w54Xg_DKP6LkR9CFEfQywfXvy5wj3-O7UCvD4AcVv-J_sFPt2slA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476152197</pqid></control><display><type>article</type><title>Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Yiu, A ; Goudie, R J B ; Tom, B D M</creator><creatorcontrib>Yiu, A ; Goudie, R J B ; Tom, B D M</creatorcontrib><description>Summary
Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa028</identifier><identifier>PMID: 34992304</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayesian analysis ; Estimators ; Parameter estimation ; Properties (attributes) ; Robustness ; Sampling ; Statistical inference ; Variance</subject><ispartof>Biometrika, 2020-12, Vol.107 (4), p.857-873</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-af24eb2454021be4ecb07e06cfb39e3150eadd169828a2f7aa2d6cdad6892cbc3</citedby><cites>FETCH-LOGICAL-c452t-af24eb2454021be4ecb07e06cfb39e3150eadd169828a2f7aa2d6cdad6892cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34992304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yiu, A</creatorcontrib><creatorcontrib>Goudie, R J B</creatorcontrib><creatorcontrib>Tom, B D M</creatorcontrib><title>Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>Summary
Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria.</description><subject>Bayesian analysis</subject><subject>Estimators</subject><subject>Parameter estimation</subject><subject>Properties (attributes)</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Statistical inference</subject><subject>Variance</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkU2L1TAUhoMoznV061IKbnTRmXw1bTeCDn4MDLjRdThJT6cZ06STtOr992a410HdSCDhcJ48nMNLyHNGzxjtxblxccb1HDIA5d0DsmNSyVo0jD4kO0qpqoWU8oQ8yfnmrlSNekxOhOx7LqjckekyjJgwWKy2MGAqN95u4KslRQPGebfuqwzz4l24rn64darWCat3sMfsIFT4c4kBw-rA-321Or_iUOG8uORssXj3Db2bYhyekkcj-IzPju8p-frh_ZeLT_XV54-XF2-vaisbvtYwcomGy0ZSzgxKtIa2SJUdjehRsIYiDANTfcc74GMLwAdlBxhU13NrrDglbw7eZTMzDrbMlsDrJbkZ0l5HcPrvTnCTvo7fdasYZ60ogldHQYq3G-ZVzy5b9B4Cxi1rrljHRTmsoC__QW_ilkJZT3NZfA1nfVuoswNlU8w54Xg_DKP6LkR9CFEfQywfXvy5wj3-O7UCvD4AcVv-J_sFPt2slA</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Yiu, A</creator><creator>Goudie, R J B</creator><creator>Tom, B D M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202012</creationdate><title>Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood</title><author>Yiu, A ; Goudie, R J B ; Tom, B D M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-af24eb2454021be4ecb07e06cfb39e3150eadd169828a2f7aa2d6cdad6892cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Estimators</topic><topic>Parameter estimation</topic><topic>Properties (attributes)</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Statistical inference</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yiu, A</creatorcontrib><creatorcontrib>Goudie, R J B</creatorcontrib><creatorcontrib>Tom, B D M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yiu, A</au><au>Goudie, R J B</au><au>Tom, B D M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2020-12</date><risdate>2020</risdate><volume>107</volume><issue>4</issue><spage>857</spage><epage>873</epage><pages>857-873</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary
Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34992304</pmid><doi>10.1093/biomet/asaa028</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2020-12, Vol.107 (4), p.857-873 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612173 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Bayesian analysis Estimators Parameter estimation Properties (attributes) Robustness Sampling Statistical inference Variance |
title | Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20under%20unequal%20probability%20sampling%20with%20the%20Bayesian%20exponentially%20tilted%20empirical%20likelihood&rft.jtitle=Biometrika&rft.au=Yiu,%20A&rft.date=2020-12&rft.volume=107&rft.issue=4&rft.spage=857&rft.epage=873&rft.pages=857-873&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa028&rft_dat=%3Cproquest_pubme%3E2476152197%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476152197&rft_id=info:pmid/34992304&rft_oup_id=10.1093/biomet/asaa028&rfr_iscdi=true |