Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood

Summary Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2020-12, Vol.107 (4), p.857-873
Hauptverfasser: Yiu, A, Goudie, R J B, Tom, B D M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 873
container_issue 4
container_start_page 857
container_title Biometrika
container_volume 107
creator Yiu, A
Goudie, R J B
Tom, B D M
description Summary Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria.
doi_str_mv 10.1093/biomet/asaa028
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asaa028</oup_id><sourcerecordid>2476152197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-af24eb2454021be4ecb07e06cfb39e3150eadd169828a2f7aa2d6cdad6892cbc3</originalsourceid><addsrcrecordid>eNqFkU2L1TAUhoMoznV061IKbnTRmXw1bTeCDn4MDLjRdThJT6cZ06STtOr992a410HdSCDhcJ48nMNLyHNGzxjtxblxccb1HDIA5d0DsmNSyVo0jD4kO0qpqoWU8oQ8yfnmrlSNekxOhOx7LqjckekyjJgwWKy2MGAqN95u4KslRQPGebfuqwzz4l24rn64darWCat3sMfsIFT4c4kBw-rA-321Or_iUOG8uORssXj3Db2bYhyekkcj-IzPju8p-frh_ZeLT_XV54-XF2-vaisbvtYwcomGy0ZSzgxKtIa2SJUdjehRsIYiDANTfcc74GMLwAdlBxhU13NrrDglbw7eZTMzDrbMlsDrJbkZ0l5HcPrvTnCTvo7fdasYZ60ogldHQYq3G-ZVzy5b9B4Cxi1rrljHRTmsoC__QW_ilkJZT3NZfA1nfVuoswNlU8w54Xg_DKP6LkR9CFEfQywfXvy5wj3-O7UCvD4AcVv-J_sFPt2slA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476152197</pqid></control><display><type>article</type><title>Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Yiu, A ; Goudie, R J B ; Tom, B D M</creator><creatorcontrib>Yiu, A ; Goudie, R J B ; Tom, B D M</creatorcontrib><description>Summary Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asaa028</identifier><identifier>PMID: 34992304</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayesian analysis ; Estimators ; Parameter estimation ; Properties (attributes) ; Robustness ; Sampling ; Statistical inference ; Variance</subject><ispartof>Biometrika, 2020-12, Vol.107 (4), p.857-873</ispartof><rights>2020 Biometrika Trust 2020</rights><rights>2020 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-af24eb2454021be4ecb07e06cfb39e3150eadd169828a2f7aa2d6cdad6892cbc3</citedby><cites>FETCH-LOGICAL-c452t-af24eb2454021be4ecb07e06cfb39e3150eadd169828a2f7aa2d6cdad6892cbc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34992304$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yiu, A</creatorcontrib><creatorcontrib>Goudie, R J B</creatorcontrib><creatorcontrib>Tom, B D M</creatorcontrib><title>Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>Summary Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria.</description><subject>Bayesian analysis</subject><subject>Estimators</subject><subject>Parameter estimation</subject><subject>Properties (attributes)</subject><subject>Robustness</subject><subject>Sampling</subject><subject>Statistical inference</subject><subject>Variance</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkU2L1TAUhoMoznV061IKbnTRmXw1bTeCDn4MDLjRdThJT6cZ06STtOr992a410HdSCDhcJ48nMNLyHNGzxjtxblxccb1HDIA5d0DsmNSyVo0jD4kO0qpqoWU8oQ8yfnmrlSNekxOhOx7LqjckekyjJgwWKy2MGAqN95u4KslRQPGebfuqwzz4l24rn64darWCat3sMfsIFT4c4kBw-rA-321Or_iUOG8uORssXj3Db2bYhyekkcj-IzPju8p-frh_ZeLT_XV54-XF2-vaisbvtYwcomGy0ZSzgxKtIa2SJUdjehRsIYiDANTfcc74GMLwAdlBxhU13NrrDglbw7eZTMzDrbMlsDrJbkZ0l5HcPrvTnCTvo7fdasYZ60ogldHQYq3G-ZVzy5b9B4Cxi1rrljHRTmsoC__QW_ilkJZT3NZfA1nfVuoswNlU8w54Xg_DKP6LkR9CFEfQywfXvy5wj3-O7UCvD4AcVv-J_sFPt2slA</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Yiu, A</creator><creator>Goudie, R J B</creator><creator>Tom, B D M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202012</creationdate><title>Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood</title><author>Yiu, A ; Goudie, R J B ; Tom, B D M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-af24eb2454021be4ecb07e06cfb39e3150eadd169828a2f7aa2d6cdad6892cbc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Estimators</topic><topic>Parameter estimation</topic><topic>Properties (attributes)</topic><topic>Robustness</topic><topic>Sampling</topic><topic>Statistical inference</topic><topic>Variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yiu, A</creatorcontrib><creatorcontrib>Goudie, R J B</creatorcontrib><creatorcontrib>Tom, B D M</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yiu, A</au><au>Goudie, R J B</au><au>Tom, B D M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2020-12</date><risdate>2020</risdate><volume>107</volume><issue>4</issue><spage>857</spage><epage>873</epage><pages>857-873</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary Fully Bayesian inference in the presence of unequal probability sampling requires stronger structural assumptions on the data-generating distribution than frequentist semiparametric methods, but offers the potential for improved small-sample inference and convenient evidence synthesis. We demonstrate that the Bayesian exponentially tilted empirical likelihood can be used to combine the practical benefits of Bayesian inference with the robustness and attractive large-sample properties of frequentist approaches. Estimators defined as the solutions to unbiased estimating equations can be used to define a semiparametric model through the set of corresponding moment constraints. We prove Bernstein–von Mises theorems which show that the posterior constructed from the resulting exponentially tilted empirical likelihood becomes approximately normal, centred at the chosen estimator with matching asymptotic variance; thus, the posterior has properties analogous to those of the estimator, such as double robustness, and the frequentist coverage of any credible set will be approximately equal to its credibility. The proposed method can be used to obtain modified versions of existing estimators with improved properties, such as guarantees that the estimator lies within the parameter space. Unlike existing Bayesian proposals, our method does not prescribe a particular choice of prior or require posterior variance correction, and simulations suggest that it provides superior performance in terms of frequentist criteria.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>34992304</pmid><doi>10.1093/biomet/asaa028</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2020-12, Vol.107 (4), p.857-873
issn 0006-3444
1464-3510
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612173
source Oxford University Press Journals All Titles (1996-Current)
subjects Bayesian analysis
Estimators
Parameter estimation
Properties (attributes)
Robustness
Sampling
Statistical inference
Variance
title Inference under unequal probability sampling with the Bayesian exponentially tilted empirical likelihood
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A10%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inference%20under%20unequal%20probability%20sampling%20with%20the%20Bayesian%20exponentially%20tilted%20empirical%20likelihood&rft.jtitle=Biometrika&rft.au=Yiu,%20A&rft.date=2020-12&rft.volume=107&rft.issue=4&rft.spage=857&rft.epage=873&rft.pages=857-873&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asaa028&rft_dat=%3Cproquest_pubme%3E2476152197%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476152197&rft_id=info:pmid/34992304&rft_oup_id=10.1093/biomet/asaa028&rfr_iscdi=true