Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation
Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition...
Gespeichert in:
Veröffentlicht in: | Nature metabolism 2021-10, Vol.3 (10), p.1313-1326 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1326 |
---|---|
container_issue | 10 |
container_start_page | 1313 |
container_title | Nature metabolism |
container_volume | 3 |
creator | Merlin, Johanna Ivanov, Stoyan Dumont, Adélie Sergushichev, Alexey Gall, Julie Stunault, Marion Ayrault, Marion Vaillant, Nathalie Castiglione, Alexia Swain, Amanda Orange, Francois Gallerand, Alexandre Berton, Thierry Martin, Jean-Charles Carobbio, Stefania Masson, Justine Gaisler-Salomon, Inna Maechler, Pierre Rayport, Stephen Sluimer, Judith C. Biessen, Erik A. L. Guinamard, Rodolphe R. Gautier, Emmanuel L. Thorp, Edward B. Artyomov, Maxim N. Yvan-Charvet, Laurent |
description | Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans.
Merlin et al. find that non-canonical glutamine transamination is required for macrophage efferocytosis in atherosclerotic plaques by sustaining redox buffering and fueling energy production for cytoskeletal rearrangements. |
doi_str_mv | 10.1038/s42255-021-00471-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582807342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-a0b90e5ae769e505124b63ad0ba395b9535b5156cdfa855b354aaedb09169c4c3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EolXpC7BAXsIi4N_E2SBVFVCkEWxgbdnOzYyrjB3sZNS8PU5TqsKCheV77XM-6_og9JqS95Rw9SELxqSsCKMVIaKh1fIMnTPJWCUVZc-f1GfoMudbQoqUCsral-iMi1oS1vBzdPoWQ-VMiME7M-D9ME_m6APgKZmQ19JMPgac5zwZHzKGvocU3TLF7DO2C3ZxHgcf9jhBF--wnVfB2k8RxzvfFf8J8HiIuay0DPe8V-hFb4YMlw_7Bfr5-dOP65tq9_3L1-urXeWEIlNliG0JSANN3YIkkjJha246Yg1vpW0ll1ZSWbuuN0pKy6UwBjpLWlq3Tjh-gT5u3HG2R-gchDLXoMfkjyYtOhqv_74J_qD38aSbmlKlWAG82wCHf2w3Vzu9nhHetIoLcaJF-_bhsRR_zZAnffTZwTCYAHHOmknFFGm4WLFsk7oUc07QP7Ip0Wu-estXl9D0fb56KaY3T4d5tPxJswj4JsjjmgAkfRvnFMoH_w_7G6v2tUM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582807342</pqid></control><display><type>article</type><title>Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Merlin, Johanna ; Ivanov, Stoyan ; Dumont, Adélie ; Sergushichev, Alexey ; Gall, Julie ; Stunault, Marion ; Ayrault, Marion ; Vaillant, Nathalie ; Castiglione, Alexia ; Swain, Amanda ; Orange, Francois ; Gallerand, Alexandre ; Berton, Thierry ; Martin, Jean-Charles ; Carobbio, Stefania ; Masson, Justine ; Gaisler-Salomon, Inna ; Maechler, Pierre ; Rayport, Stephen ; Sluimer, Judith C. ; Biessen, Erik A. L. ; Guinamard, Rodolphe R. ; Gautier, Emmanuel L. ; Thorp, Edward B. ; Artyomov, Maxim N. ; Yvan-Charvet, Laurent</creator><creatorcontrib>Merlin, Johanna ; Ivanov, Stoyan ; Dumont, Adélie ; Sergushichev, Alexey ; Gall, Julie ; Stunault, Marion ; Ayrault, Marion ; Vaillant, Nathalie ; Castiglione, Alexia ; Swain, Amanda ; Orange, Francois ; Gallerand, Alexandre ; Berton, Thierry ; Martin, Jean-Charles ; Carobbio, Stefania ; Masson, Justine ; Gaisler-Salomon, Inna ; Maechler, Pierre ; Rayport, Stephen ; Sluimer, Judith C. ; Biessen, Erik A. L. ; Guinamard, Rodolphe R. ; Gautier, Emmanuel L. ; Thorp, Edward B. ; Artyomov, Maxim N. ; Yvan-Charvet, Laurent</creatorcontrib><description>Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans.
Merlin et al. find that non-canonical glutamine transamination is required for macrophage efferocytosis in atherosclerotic plaques by sustaining redox buffering and fueling energy production for cytoskeletal rearrangements.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-021-00471-y</identifier><identifier>PMID: 34650273</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 14/19 ; 38/91 ; 631/250/2504/342/1726 ; 631/250/256/2515 ; 631/443/1338/2100 ; 631/443/319/1642 ; 64/60 ; Amination ; Animals ; Biomedical and Life Sciences ; Glutamine ; Glutamine - metabolism ; Life Sciences ; Mice ; Oxidative Phosphorylation ; Phagocytosis</subject><ispartof>Nature metabolism, 2021-10, Vol.3 (10), p.1313-1326</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-a0b90e5ae769e505124b63ad0ba395b9535b5156cdfa855b354aaedb09169c4c3</citedby><cites>FETCH-LOGICAL-c480t-a0b90e5ae769e505124b63ad0ba395b9535b5156cdfa855b354aaedb09169c4c3</cites><orcidid>0000-0002-2870-0012 ; 0000-0002-0269-4582 ; 0000-0002-1133-4212 ; 0000-0003-1159-7220 ; 0000-0003-0683-368X ; 0000-0002-7748-4942 ; 0000-0002-4298-5114 ; 0000-0002-2005-1433 ; 0000-0002-5082-0686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-021-00471-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-021-00471-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34650273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03798344$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Merlin, Johanna</creatorcontrib><creatorcontrib>Ivanov, Stoyan</creatorcontrib><creatorcontrib>Dumont, Adélie</creatorcontrib><creatorcontrib>Sergushichev, Alexey</creatorcontrib><creatorcontrib>Gall, Julie</creatorcontrib><creatorcontrib>Stunault, Marion</creatorcontrib><creatorcontrib>Ayrault, Marion</creatorcontrib><creatorcontrib>Vaillant, Nathalie</creatorcontrib><creatorcontrib>Castiglione, Alexia</creatorcontrib><creatorcontrib>Swain, Amanda</creatorcontrib><creatorcontrib>Orange, Francois</creatorcontrib><creatorcontrib>Gallerand, Alexandre</creatorcontrib><creatorcontrib>Berton, Thierry</creatorcontrib><creatorcontrib>Martin, Jean-Charles</creatorcontrib><creatorcontrib>Carobbio, Stefania</creatorcontrib><creatorcontrib>Masson, Justine</creatorcontrib><creatorcontrib>Gaisler-Salomon, Inna</creatorcontrib><creatorcontrib>Maechler, Pierre</creatorcontrib><creatorcontrib>Rayport, Stephen</creatorcontrib><creatorcontrib>Sluimer, Judith C.</creatorcontrib><creatorcontrib>Biessen, Erik A. L.</creatorcontrib><creatorcontrib>Guinamard, Rodolphe R.</creatorcontrib><creatorcontrib>Gautier, Emmanuel L.</creatorcontrib><creatorcontrib>Thorp, Edward B.</creatorcontrib><creatorcontrib>Artyomov, Maxim N.</creatorcontrib><creatorcontrib>Yvan-Charvet, Laurent</creatorcontrib><title>Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans.
Merlin et al. find that non-canonical glutamine transamination is required for macrophage efferocytosis in atherosclerotic plaques by sustaining redox buffering and fueling energy production for cytoskeletal rearrangements.</description><subject>13/31</subject><subject>14/19</subject><subject>38/91</subject><subject>631/250/2504/342/1726</subject><subject>631/250/256/2515</subject><subject>631/443/1338/2100</subject><subject>631/443/319/1642</subject><subject>64/60</subject><subject>Amination</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Glutamine</subject><subject>Glutamine - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Oxidative Phosphorylation</subject><subject>Phagocytosis</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EolXpC7BAXsIi4N_E2SBVFVCkEWxgbdnOzYyrjB3sZNS8PU5TqsKCheV77XM-6_og9JqS95Rw9SELxqSsCKMVIaKh1fIMnTPJWCUVZc-f1GfoMudbQoqUCsral-iMi1oS1vBzdPoWQ-VMiME7M-D9ME_m6APgKZmQ19JMPgac5zwZHzKGvocU3TLF7DO2C3ZxHgcf9jhBF--wnVfB2k8RxzvfFf8J8HiIuay0DPe8V-hFb4YMlw_7Bfr5-dOP65tq9_3L1-urXeWEIlNliG0JSANN3YIkkjJha246Yg1vpW0ll1ZSWbuuN0pKy6UwBjpLWlq3Tjh-gT5u3HG2R-gchDLXoMfkjyYtOhqv_74J_qD38aSbmlKlWAG82wCHf2w3Vzu9nhHetIoLcaJF-_bhsRR_zZAnffTZwTCYAHHOmknFFGm4WLFsk7oUc07QP7Ip0Wu-estXl9D0fb56KaY3T4d5tPxJswj4JsjjmgAkfRvnFMoH_w_7G6v2tUM</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Merlin, Johanna</creator><creator>Ivanov, Stoyan</creator><creator>Dumont, Adélie</creator><creator>Sergushichev, Alexey</creator><creator>Gall, Julie</creator><creator>Stunault, Marion</creator><creator>Ayrault, Marion</creator><creator>Vaillant, Nathalie</creator><creator>Castiglione, Alexia</creator><creator>Swain, Amanda</creator><creator>Orange, Francois</creator><creator>Gallerand, Alexandre</creator><creator>Berton, Thierry</creator><creator>Martin, Jean-Charles</creator><creator>Carobbio, Stefania</creator><creator>Masson, Justine</creator><creator>Gaisler-Salomon, Inna</creator><creator>Maechler, Pierre</creator><creator>Rayport, Stephen</creator><creator>Sluimer, Judith C.</creator><creator>Biessen, Erik A. L.</creator><creator>Guinamard, Rodolphe R.</creator><creator>Gautier, Emmanuel L.</creator><creator>Thorp, Edward B.</creator><creator>Artyomov, Maxim N.</creator><creator>Yvan-Charvet, Laurent</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2870-0012</orcidid><orcidid>https://orcid.org/0000-0002-0269-4582</orcidid><orcidid>https://orcid.org/0000-0002-1133-4212</orcidid><orcidid>https://orcid.org/0000-0003-1159-7220</orcidid><orcidid>https://orcid.org/0000-0003-0683-368X</orcidid><orcidid>https://orcid.org/0000-0002-7748-4942</orcidid><orcidid>https://orcid.org/0000-0002-4298-5114</orcidid><orcidid>https://orcid.org/0000-0002-2005-1433</orcidid><orcidid>https://orcid.org/0000-0002-5082-0686</orcidid></search><sort><creationdate>20211001</creationdate><title>Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation</title><author>Merlin, Johanna ; Ivanov, Stoyan ; Dumont, Adélie ; Sergushichev, Alexey ; Gall, Julie ; Stunault, Marion ; Ayrault, Marion ; Vaillant, Nathalie ; Castiglione, Alexia ; Swain, Amanda ; Orange, Francois ; Gallerand, Alexandre ; Berton, Thierry ; Martin, Jean-Charles ; Carobbio, Stefania ; Masson, Justine ; Gaisler-Salomon, Inna ; Maechler, Pierre ; Rayport, Stephen ; Sluimer, Judith C. ; Biessen, Erik A. L. ; Guinamard, Rodolphe R. ; Gautier, Emmanuel L. ; Thorp, Edward B. ; Artyomov, Maxim N. ; Yvan-Charvet, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-a0b90e5ae769e505124b63ad0ba395b9535b5156cdfa855b354aaedb09169c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/31</topic><topic>14/19</topic><topic>38/91</topic><topic>631/250/2504/342/1726</topic><topic>631/250/256/2515</topic><topic>631/443/1338/2100</topic><topic>631/443/319/1642</topic><topic>64/60</topic><topic>Amination</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Glutamine</topic><topic>Glutamine - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Oxidative Phosphorylation</topic><topic>Phagocytosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merlin, Johanna</creatorcontrib><creatorcontrib>Ivanov, Stoyan</creatorcontrib><creatorcontrib>Dumont, Adélie</creatorcontrib><creatorcontrib>Sergushichev, Alexey</creatorcontrib><creatorcontrib>Gall, Julie</creatorcontrib><creatorcontrib>Stunault, Marion</creatorcontrib><creatorcontrib>Ayrault, Marion</creatorcontrib><creatorcontrib>Vaillant, Nathalie</creatorcontrib><creatorcontrib>Castiglione, Alexia</creatorcontrib><creatorcontrib>Swain, Amanda</creatorcontrib><creatorcontrib>Orange, Francois</creatorcontrib><creatorcontrib>Gallerand, Alexandre</creatorcontrib><creatorcontrib>Berton, Thierry</creatorcontrib><creatorcontrib>Martin, Jean-Charles</creatorcontrib><creatorcontrib>Carobbio, Stefania</creatorcontrib><creatorcontrib>Masson, Justine</creatorcontrib><creatorcontrib>Gaisler-Salomon, Inna</creatorcontrib><creatorcontrib>Maechler, Pierre</creatorcontrib><creatorcontrib>Rayport, Stephen</creatorcontrib><creatorcontrib>Sluimer, Judith C.</creatorcontrib><creatorcontrib>Biessen, Erik A. L.</creatorcontrib><creatorcontrib>Guinamard, Rodolphe R.</creatorcontrib><creatorcontrib>Gautier, Emmanuel L.</creatorcontrib><creatorcontrib>Thorp, Edward B.</creatorcontrib><creatorcontrib>Artyomov, Maxim N.</creatorcontrib><creatorcontrib>Yvan-Charvet, Laurent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlin, Johanna</au><au>Ivanov, Stoyan</au><au>Dumont, Adélie</au><au>Sergushichev, Alexey</au><au>Gall, Julie</au><au>Stunault, Marion</au><au>Ayrault, Marion</au><au>Vaillant, Nathalie</au><au>Castiglione, Alexia</au><au>Swain, Amanda</au><au>Orange, Francois</au><au>Gallerand, Alexandre</au><au>Berton, Thierry</au><au>Martin, Jean-Charles</au><au>Carobbio, Stefania</au><au>Masson, Justine</au><au>Gaisler-Salomon, Inna</au><au>Maechler, Pierre</au><au>Rayport, Stephen</au><au>Sluimer, Judith C.</au><au>Biessen, Erik A. L.</au><au>Guinamard, Rodolphe R.</au><au>Gautier, Emmanuel L.</au><au>Thorp, Edward B.</au><au>Artyomov, Maxim N.</au><au>Yvan-Charvet, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>3</volume><issue>10</issue><spage>1313</spage><epage>1326</epage><pages>1313-1326</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans.
Merlin et al. find that non-canonical glutamine transamination is required for macrophage efferocytosis in atherosclerotic plaques by sustaining redox buffering and fueling energy production for cytoskeletal rearrangements.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34650273</pmid><doi>10.1038/s42255-021-00471-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2870-0012</orcidid><orcidid>https://orcid.org/0000-0002-0269-4582</orcidid><orcidid>https://orcid.org/0000-0002-1133-4212</orcidid><orcidid>https://orcid.org/0000-0003-1159-7220</orcidid><orcidid>https://orcid.org/0000-0003-0683-368X</orcidid><orcidid>https://orcid.org/0000-0002-7748-4942</orcidid><orcidid>https://orcid.org/0000-0002-4298-5114</orcidid><orcidid>https://orcid.org/0000-0002-2005-1433</orcidid><orcidid>https://orcid.org/0000-0002-5082-0686</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2522-5812 |
ispartof | Nature metabolism, 2021-10, Vol.3 (10), p.1313-1326 |
issn | 2522-5812 2522-5812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611882 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | 13/31 14/19 38/91 631/250/2504/342/1726 631/250/256/2515 631/443/1338/2100 631/443/319/1642 64/60 Amination Animals Biomedical and Life Sciences Glutamine Glutamine - metabolism Life Sciences Mice Oxidative Phosphorylation Phagocytosis |
title | Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-canonical%20glutamine%20transamination%20sustains%20efferocytosis%20by%20coupling%20redox%20buffering%20to%20oxidative%20phosphorylation&rft.jtitle=Nature%20metabolism&rft.au=Merlin,%20Johanna&rft.date=2021-10-01&rft.volume=3&rft.issue=10&rft.spage=1313&rft.epage=1326&rft.pages=1313-1326&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-021-00471-y&rft_dat=%3Cproquest_pubme%3E2582807342%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582807342&rft_id=info:pmid/34650273&rfr_iscdi=true |