Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation

Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature metabolism 2021-10, Vol.3 (10), p.1313-1326
Hauptverfasser: Merlin, Johanna, Ivanov, Stoyan, Dumont, Adélie, Sergushichev, Alexey, Gall, Julie, Stunault, Marion, Ayrault, Marion, Vaillant, Nathalie, Castiglione, Alexia, Swain, Amanda, Orange, Francois, Gallerand, Alexandre, Berton, Thierry, Martin, Jean-Charles, Carobbio, Stefania, Masson, Justine, Gaisler-Salomon, Inna, Maechler, Pierre, Rayport, Stephen, Sluimer, Judith C., Biessen, Erik A. L., Guinamard, Rodolphe R., Gautier, Emmanuel L., Thorp, Edward B., Artyomov, Maxim N., Yvan-Charvet, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1326
container_issue 10
container_start_page 1313
container_title Nature metabolism
container_volume 3
creator Merlin, Johanna
Ivanov, Stoyan
Dumont, Adélie
Sergushichev, Alexey
Gall, Julie
Stunault, Marion
Ayrault, Marion
Vaillant, Nathalie
Castiglione, Alexia
Swain, Amanda
Orange, Francois
Gallerand, Alexandre
Berton, Thierry
Martin, Jean-Charles
Carobbio, Stefania
Masson, Justine
Gaisler-Salomon, Inna
Maechler, Pierre
Rayport, Stephen
Sluimer, Judith C.
Biessen, Erik A. L.
Guinamard, Rodolphe R.
Gautier, Emmanuel L.
Thorp, Edward B.
Artyomov, Maxim N.
Yvan-Charvet, Laurent
description Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans. Merlin et al. find that non-canonical glutamine transamination is required for macrophage efferocytosis in atherosclerotic plaques by sustaining redox buffering and fueling energy production for cytoskeletal rearrangements.
doi_str_mv 10.1038/s42255-021-00471-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2582807342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-a0b90e5ae769e505124b63ad0ba395b9535b5156cdfa855b354aaedb09169c4c3</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhS0EolXpC7BAXsIi4N_E2SBVFVCkEWxgbdnOzYyrjB3sZNS8PU5TqsKCheV77XM-6_og9JqS95Rw9SELxqSsCKMVIaKh1fIMnTPJWCUVZc-f1GfoMudbQoqUCsral-iMi1oS1vBzdPoWQ-VMiME7M-D9ME_m6APgKZmQ19JMPgac5zwZHzKGvocU3TLF7DO2C3ZxHgcf9jhBF--wnVfB2k8RxzvfFf8J8HiIuay0DPe8V-hFb4YMlw_7Bfr5-dOP65tq9_3L1-urXeWEIlNliG0JSANN3YIkkjJha246Yg1vpW0ll1ZSWbuuN0pKy6UwBjpLWlq3Tjh-gT5u3HG2R-gchDLXoMfkjyYtOhqv_74J_qD38aSbmlKlWAG82wCHf2w3Vzu9nhHetIoLcaJF-_bhsRR_zZAnffTZwTCYAHHOmknFFGm4WLFsk7oUc07QP7Ip0Wu-estXl9D0fb56KaY3T4d5tPxJswj4JsjjmgAkfRvnFMoH_w_7G6v2tUM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582807342</pqid></control><display><type>article</type><title>Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Merlin, Johanna ; Ivanov, Stoyan ; Dumont, Adélie ; Sergushichev, Alexey ; Gall, Julie ; Stunault, Marion ; Ayrault, Marion ; Vaillant, Nathalie ; Castiglione, Alexia ; Swain, Amanda ; Orange, Francois ; Gallerand, Alexandre ; Berton, Thierry ; Martin, Jean-Charles ; Carobbio, Stefania ; Masson, Justine ; Gaisler-Salomon, Inna ; Maechler, Pierre ; Rayport, Stephen ; Sluimer, Judith C. ; Biessen, Erik A. L. ; Guinamard, Rodolphe R. ; Gautier, Emmanuel L. ; Thorp, Edward B. ; Artyomov, Maxim N. ; Yvan-Charvet, Laurent</creator><creatorcontrib>Merlin, Johanna ; Ivanov, Stoyan ; Dumont, Adélie ; Sergushichev, Alexey ; Gall, Julie ; Stunault, Marion ; Ayrault, Marion ; Vaillant, Nathalie ; Castiglione, Alexia ; Swain, Amanda ; Orange, Francois ; Gallerand, Alexandre ; Berton, Thierry ; Martin, Jean-Charles ; Carobbio, Stefania ; Masson, Justine ; Gaisler-Salomon, Inna ; Maechler, Pierre ; Rayport, Stephen ; Sluimer, Judith C. ; Biessen, Erik A. L. ; Guinamard, Rodolphe R. ; Gautier, Emmanuel L. ; Thorp, Edward B. ; Artyomov, Maxim N. ; Yvan-Charvet, Laurent</creatorcontrib><description>Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans. Merlin et al. find that non-canonical glutamine transamination is required for macrophage efferocytosis in atherosclerotic plaques by sustaining redox buffering and fueling energy production for cytoskeletal rearrangements.</description><identifier>ISSN: 2522-5812</identifier><identifier>EISSN: 2522-5812</identifier><identifier>DOI: 10.1038/s42255-021-00471-y</identifier><identifier>PMID: 34650273</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/31 ; 14/19 ; 38/91 ; 631/250/2504/342/1726 ; 631/250/256/2515 ; 631/443/1338/2100 ; 631/443/319/1642 ; 64/60 ; Amination ; Animals ; Biomedical and Life Sciences ; Glutamine ; Glutamine - metabolism ; Life Sciences ; Mice ; Oxidative Phosphorylation ; Phagocytosis</subject><ispartof>Nature metabolism, 2021-10, Vol.3 (10), p.1313-1326</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-a0b90e5ae769e505124b63ad0ba395b9535b5156cdfa855b354aaedb09169c4c3</citedby><cites>FETCH-LOGICAL-c480t-a0b90e5ae769e505124b63ad0ba395b9535b5156cdfa855b354aaedb09169c4c3</cites><orcidid>0000-0002-2870-0012 ; 0000-0002-0269-4582 ; 0000-0002-1133-4212 ; 0000-0003-1159-7220 ; 0000-0003-0683-368X ; 0000-0002-7748-4942 ; 0000-0002-4298-5114 ; 0000-0002-2005-1433 ; 0000-0002-5082-0686</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s42255-021-00471-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s42255-021-00471-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34650273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03798344$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Merlin, Johanna</creatorcontrib><creatorcontrib>Ivanov, Stoyan</creatorcontrib><creatorcontrib>Dumont, Adélie</creatorcontrib><creatorcontrib>Sergushichev, Alexey</creatorcontrib><creatorcontrib>Gall, Julie</creatorcontrib><creatorcontrib>Stunault, Marion</creatorcontrib><creatorcontrib>Ayrault, Marion</creatorcontrib><creatorcontrib>Vaillant, Nathalie</creatorcontrib><creatorcontrib>Castiglione, Alexia</creatorcontrib><creatorcontrib>Swain, Amanda</creatorcontrib><creatorcontrib>Orange, Francois</creatorcontrib><creatorcontrib>Gallerand, Alexandre</creatorcontrib><creatorcontrib>Berton, Thierry</creatorcontrib><creatorcontrib>Martin, Jean-Charles</creatorcontrib><creatorcontrib>Carobbio, Stefania</creatorcontrib><creatorcontrib>Masson, Justine</creatorcontrib><creatorcontrib>Gaisler-Salomon, Inna</creatorcontrib><creatorcontrib>Maechler, Pierre</creatorcontrib><creatorcontrib>Rayport, Stephen</creatorcontrib><creatorcontrib>Sluimer, Judith C.</creatorcontrib><creatorcontrib>Biessen, Erik A. L.</creatorcontrib><creatorcontrib>Guinamard, Rodolphe R.</creatorcontrib><creatorcontrib>Gautier, Emmanuel L.</creatorcontrib><creatorcontrib>Thorp, Edward B.</creatorcontrib><creatorcontrib>Artyomov, Maxim N.</creatorcontrib><creatorcontrib>Yvan-Charvet, Laurent</creatorcontrib><title>Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation</title><title>Nature metabolism</title><addtitle>Nat Metab</addtitle><addtitle>Nat Metab</addtitle><description>Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans. Merlin et al. find that non-canonical glutamine transamination is required for macrophage efferocytosis in atherosclerotic plaques by sustaining redox buffering and fueling energy production for cytoskeletal rearrangements.</description><subject>13/31</subject><subject>14/19</subject><subject>38/91</subject><subject>631/250/2504/342/1726</subject><subject>631/250/256/2515</subject><subject>631/443/1338/2100</subject><subject>631/443/319/1642</subject><subject>64/60</subject><subject>Amination</subject><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Glutamine</subject><subject>Glutamine - metabolism</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Oxidative Phosphorylation</subject><subject>Phagocytosis</subject><issn>2522-5812</issn><issn>2522-5812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhS0EolXpC7BAXsIi4N_E2SBVFVCkEWxgbdnOzYyrjB3sZNS8PU5TqsKCheV77XM-6_og9JqS95Rw9SELxqSsCKMVIaKh1fIMnTPJWCUVZc-f1GfoMudbQoqUCsral-iMi1oS1vBzdPoWQ-VMiME7M-D9ME_m6APgKZmQ19JMPgac5zwZHzKGvocU3TLF7DO2C3ZxHgcf9jhBF--wnVfB2k8RxzvfFf8J8HiIuay0DPe8V-hFb4YMlw_7Bfr5-dOP65tq9_3L1-urXeWEIlNliG0JSANN3YIkkjJha246Yg1vpW0ll1ZSWbuuN0pKy6UwBjpLWlq3Tjh-gT5u3HG2R-gchDLXoMfkjyYtOhqv_74J_qD38aSbmlKlWAG82wCHf2w3Vzu9nhHetIoLcaJF-_bhsRR_zZAnffTZwTCYAHHOmknFFGm4WLFsk7oUc07QP7Ip0Wu-estXl9D0fb56KaY3T4d5tPxJswj4JsjjmgAkfRvnFMoH_w_7G6v2tUM</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Merlin, Johanna</creator><creator>Ivanov, Stoyan</creator><creator>Dumont, Adélie</creator><creator>Sergushichev, Alexey</creator><creator>Gall, Julie</creator><creator>Stunault, Marion</creator><creator>Ayrault, Marion</creator><creator>Vaillant, Nathalie</creator><creator>Castiglione, Alexia</creator><creator>Swain, Amanda</creator><creator>Orange, Francois</creator><creator>Gallerand, Alexandre</creator><creator>Berton, Thierry</creator><creator>Martin, Jean-Charles</creator><creator>Carobbio, Stefania</creator><creator>Masson, Justine</creator><creator>Gaisler-Salomon, Inna</creator><creator>Maechler, Pierre</creator><creator>Rayport, Stephen</creator><creator>Sluimer, Judith C.</creator><creator>Biessen, Erik A. L.</creator><creator>Guinamard, Rodolphe R.</creator><creator>Gautier, Emmanuel L.</creator><creator>Thorp, Edward B.</creator><creator>Artyomov, Maxim N.</creator><creator>Yvan-Charvet, Laurent</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2870-0012</orcidid><orcidid>https://orcid.org/0000-0002-0269-4582</orcidid><orcidid>https://orcid.org/0000-0002-1133-4212</orcidid><orcidid>https://orcid.org/0000-0003-1159-7220</orcidid><orcidid>https://orcid.org/0000-0003-0683-368X</orcidid><orcidid>https://orcid.org/0000-0002-7748-4942</orcidid><orcidid>https://orcid.org/0000-0002-4298-5114</orcidid><orcidid>https://orcid.org/0000-0002-2005-1433</orcidid><orcidid>https://orcid.org/0000-0002-5082-0686</orcidid></search><sort><creationdate>20211001</creationdate><title>Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation</title><author>Merlin, Johanna ; Ivanov, Stoyan ; Dumont, Adélie ; Sergushichev, Alexey ; Gall, Julie ; Stunault, Marion ; Ayrault, Marion ; Vaillant, Nathalie ; Castiglione, Alexia ; Swain, Amanda ; Orange, Francois ; Gallerand, Alexandre ; Berton, Thierry ; Martin, Jean-Charles ; Carobbio, Stefania ; Masson, Justine ; Gaisler-Salomon, Inna ; Maechler, Pierre ; Rayport, Stephen ; Sluimer, Judith C. ; Biessen, Erik A. L. ; Guinamard, Rodolphe R. ; Gautier, Emmanuel L. ; Thorp, Edward B. ; Artyomov, Maxim N. ; Yvan-Charvet, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-a0b90e5ae769e505124b63ad0ba395b9535b5156cdfa855b354aaedb09169c4c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>13/31</topic><topic>14/19</topic><topic>38/91</topic><topic>631/250/2504/342/1726</topic><topic>631/250/256/2515</topic><topic>631/443/1338/2100</topic><topic>631/443/319/1642</topic><topic>64/60</topic><topic>Amination</topic><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Glutamine</topic><topic>Glutamine - metabolism</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Oxidative Phosphorylation</topic><topic>Phagocytosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merlin, Johanna</creatorcontrib><creatorcontrib>Ivanov, Stoyan</creatorcontrib><creatorcontrib>Dumont, Adélie</creatorcontrib><creatorcontrib>Sergushichev, Alexey</creatorcontrib><creatorcontrib>Gall, Julie</creatorcontrib><creatorcontrib>Stunault, Marion</creatorcontrib><creatorcontrib>Ayrault, Marion</creatorcontrib><creatorcontrib>Vaillant, Nathalie</creatorcontrib><creatorcontrib>Castiglione, Alexia</creatorcontrib><creatorcontrib>Swain, Amanda</creatorcontrib><creatorcontrib>Orange, Francois</creatorcontrib><creatorcontrib>Gallerand, Alexandre</creatorcontrib><creatorcontrib>Berton, Thierry</creatorcontrib><creatorcontrib>Martin, Jean-Charles</creatorcontrib><creatorcontrib>Carobbio, Stefania</creatorcontrib><creatorcontrib>Masson, Justine</creatorcontrib><creatorcontrib>Gaisler-Salomon, Inna</creatorcontrib><creatorcontrib>Maechler, Pierre</creatorcontrib><creatorcontrib>Rayport, Stephen</creatorcontrib><creatorcontrib>Sluimer, Judith C.</creatorcontrib><creatorcontrib>Biessen, Erik A. L.</creatorcontrib><creatorcontrib>Guinamard, Rodolphe R.</creatorcontrib><creatorcontrib>Gautier, Emmanuel L.</creatorcontrib><creatorcontrib>Thorp, Edward B.</creatorcontrib><creatorcontrib>Artyomov, Maxim N.</creatorcontrib><creatorcontrib>Yvan-Charvet, Laurent</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature metabolism</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merlin, Johanna</au><au>Ivanov, Stoyan</au><au>Dumont, Adélie</au><au>Sergushichev, Alexey</au><au>Gall, Julie</au><au>Stunault, Marion</au><au>Ayrault, Marion</au><au>Vaillant, Nathalie</au><au>Castiglione, Alexia</au><au>Swain, Amanda</au><au>Orange, Francois</au><au>Gallerand, Alexandre</au><au>Berton, Thierry</au><au>Martin, Jean-Charles</au><au>Carobbio, Stefania</au><au>Masson, Justine</au><au>Gaisler-Salomon, Inna</au><au>Maechler, Pierre</au><au>Rayport, Stephen</au><au>Sluimer, Judith C.</au><au>Biessen, Erik A. L.</au><au>Guinamard, Rodolphe R.</au><au>Gautier, Emmanuel L.</au><au>Thorp, Edward B.</au><au>Artyomov, Maxim N.</au><au>Yvan-Charvet, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation</atitle><jtitle>Nature metabolism</jtitle><stitle>Nat Metab</stitle><addtitle>Nat Metab</addtitle><date>2021-10-01</date><risdate>2021</risdate><volume>3</volume><issue>10</issue><spage>1313</spage><epage>1326</epage><pages>1313-1326</pages><issn>2522-5812</issn><eissn>2522-5812</eissn><abstract>Macrophages rely on tightly integrated metabolic rewiring to clear dying neighboring cells by efferocytosis during homeostasis and disease. Here we reveal that glutaminase-1-mediated glutaminolysis is critical to promote apoptotic cell clearance by macrophages during homeostasis in mice. In addition, impaired macrophage glutaminolysis exacerbates atherosclerosis, a condition during which, efficient apoptotic cell debris clearance is critical to limit disease progression. Glutaminase-1 expression strongly correlates with atherosclerotic plaque necrosis in patients with cardiovascular diseases. High-throughput transcriptional and metabolic profiling reveals that macrophage efferocytic capacity relies on a non-canonical transaminase pathway, independent from the traditional requirement of glutamate dehydrogenase to fuel ɑ-ketoglutarate-dependent immunometabolism. This pathway is necessary to meet the unique requirements of efferocytosis for cellular detoxification and high-energy cytoskeletal rearrangements. Thus, we uncover a role for non-canonical glutamine metabolism for efficient clearance of dying cells and maintenance of tissue homeostasis during health and disease in mouse and humans. Merlin et al. find that non-canonical glutamine transamination is required for macrophage efferocytosis in atherosclerotic plaques by sustaining redox buffering and fueling energy production for cytoskeletal rearrangements.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34650273</pmid><doi>10.1038/s42255-021-00471-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2870-0012</orcidid><orcidid>https://orcid.org/0000-0002-0269-4582</orcidid><orcidid>https://orcid.org/0000-0002-1133-4212</orcidid><orcidid>https://orcid.org/0000-0003-1159-7220</orcidid><orcidid>https://orcid.org/0000-0003-0683-368X</orcidid><orcidid>https://orcid.org/0000-0002-7748-4942</orcidid><orcidid>https://orcid.org/0000-0002-4298-5114</orcidid><orcidid>https://orcid.org/0000-0002-2005-1433</orcidid><orcidid>https://orcid.org/0000-0002-5082-0686</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2522-5812
ispartof Nature metabolism, 2021-10, Vol.3 (10), p.1313-1326
issn 2522-5812
2522-5812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611882
source MEDLINE; Springer Nature - Complete Springer Journals
subjects 13/31
14/19
38/91
631/250/2504/342/1726
631/250/256/2515
631/443/1338/2100
631/443/319/1642
64/60
Amination
Animals
Biomedical and Life Sciences
Glutamine
Glutamine - metabolism
Life Sciences
Mice
Oxidative Phosphorylation
Phagocytosis
title Non-canonical glutamine transamination sustains efferocytosis by coupling redox buffering to oxidative phosphorylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A38%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-canonical%20glutamine%20transamination%20sustains%20efferocytosis%20by%20coupling%20redox%20buffering%20to%20oxidative%20phosphorylation&rft.jtitle=Nature%20metabolism&rft.au=Merlin,%20Johanna&rft.date=2021-10-01&rft.volume=3&rft.issue=10&rft.spage=1313&rft.epage=1326&rft.pages=1313-1326&rft.issn=2522-5812&rft.eissn=2522-5812&rft_id=info:doi/10.1038/s42255-021-00471-y&rft_dat=%3Cproquest_pubme%3E2582807342%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2582807342&rft_id=info:pmid/34650273&rfr_iscdi=true