Gating and modulation of a hetero-octameric AMPA glutamate receptor
AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning 1 . A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2021-06, Vol.594 (7863), p.454-458 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 458 |
---|---|
container_issue | 7863 |
container_start_page | 454 |
container_title | Nature (London) |
container_volume | 594 |
creator | Zhang, Danyang Watson, Jake F. Matthews, Peter M. Cais, Ondrej Greger, Ingo H. |
description | AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning
1
. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength
2
. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1–GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.
Analyses of AMPA receptor–auxiliary subunit complexes provide insights into the gating and modulation of the AMPA receptor by TARP-γ8 and CNIH2. |
doi_str_mv | 10.1038/s41586-021-03613-0 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A665595306</galeid><sourcerecordid>A665595306</sourcerecordid><originalsourceid>FETCH-LOGICAL-c779t-fbf8430aeee4334cfc0dd4097c5fa342e37f9af0bd7f82b44f4d81f57d8f789d3</originalsourceid><addsrcrecordid>eNp90u9v1CAYB3BiNO48_Qd8YRp9ozFMKLTQNybNReeS-SM640vC0YeuSws3oEb_e5k3t505TZM2wIcvNM-D0GNKDilh8lXktJI1JiXFhNWUYXIHLSgXNea1FHfRgpBSYiJZfYAexHhOCKmo4PfRAeNENLRsFmh1pNPg-kK7rph8N4956F3hbaGLM0gQPPYm6QnCYIr2_ae26Mc5j3WCIoCBTfLhIbpn9Rjh0dV3ib6-fXO6eodPPh4dr9oTbIRoErZrKzkjGgA4Y9xYQ7qOk0aYymrGS2DCNtqSdSesLNecW95JaivRSStk07Eler3N3czrCToDLgU9qk0YJh1-Kq8HtbvihjPV--9K1JSKsskBz68Cgr-YISY1DdHAOGoHfo6qrFgtGiErnumzv-i5n4PLv5cVL0UluWxuVK9HUIOzPp9rLkNVW9dV1VSM1FnhPaoHB_mS3oEd8vSOf7rHm81woW6jwz0oPx1Mg9mb-mJnQzYJfqRezzGq4y-fd-3Lf9v29Nvqw64ut9oEH2MAe10SStRlp6ptp6rcqep3p-b3Ej25XczrLX9aMwO2BTEvuR7CTQX-E_sLaCHvZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2542758489</pqid></control><display><type>article</type><title>Gating and modulation of a hetero-octameric AMPA glutamate receptor</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhang, Danyang ; Watson, Jake F. ; Matthews, Peter M. ; Cais, Ondrej ; Greger, Ingo H.</creator><creatorcontrib>Zhang, Danyang ; Watson, Jake F. ; Matthews, Peter M. ; Cais, Ondrej ; Greger, Ingo H.</creatorcontrib><description>AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning
1
. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength
2
. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1–GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.
Analyses of AMPA receptor–auxiliary subunit complexes provide insights into the gating and modulation of the AMPA receptor by TARP-γ8 and CNIH2.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-03613-0</identifier><identifier>PMID: 34079129</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/378/2586 ; 631/535/1258/1259 ; 9/74 ; Amino Acid Sequence ; AMPA receptors ; Animals ; Asymmetry ; Binding sites ; Brain ; Calcium Channels - chemistry ; Calcium Channels - metabolism ; Calcium Channels - ultrastructure ; Cellular signal transduction ; Channel gating ; Conformation ; Cryoelectron Microscopy ; Electron microscopy ; Endoplasmic reticulum ; Forebrain ; Glutamate receptors ; Hippocampus ; Humanities and Social Sciences ; Ion Channel Gating ; Ligands ; Lipid Metabolism ; Lipid rafts ; Lipids ; Mice ; Mice, Inbred C57BL ; Microscopy ; Models, Molecular ; multidisciplinary ; Neurological research ; Neuroplasticity ; Observations ; Physiological aspects ; Protein Multimerization ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Proteins ; Pyramidal cells ; Pyramidal Cells - metabolism ; Receptors ; Receptors, AMPA - chemistry ; Receptors, AMPA - metabolism ; Receptors, AMPA - ultrastructure ; Rotation ; Science ; Science (multidisciplinary) ; Synaptic plasticity ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid ; α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><ispartof>Nature (London), 2021-06, Vol.594 (7863), p.454-458</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 17, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c779t-fbf8430aeee4334cfc0dd4097c5fa342e37f9af0bd7f82b44f4d81f57d8f789d3</citedby><cites>FETCH-LOGICAL-c779t-fbf8430aeee4334cfc0dd4097c5fa342e37f9af0bd7f82b44f4d81f57d8f789d3</cites><orcidid>0000-0002-7291-2581 ; 0000-0002-8698-3823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-03613-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-03613-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34079129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Danyang</creatorcontrib><creatorcontrib>Watson, Jake F.</creatorcontrib><creatorcontrib>Matthews, Peter M.</creatorcontrib><creatorcontrib>Cais, Ondrej</creatorcontrib><creatorcontrib>Greger, Ingo H.</creatorcontrib><title>Gating and modulation of a hetero-octameric AMPA glutamate receptor</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning
1
. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength
2
. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1–GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.
Analyses of AMPA receptor–auxiliary subunit complexes provide insights into the gating and modulation of the AMPA receptor by TARP-γ8 and CNIH2.</description><subject>101/28</subject><subject>631/378/2586</subject><subject>631/535/1258/1259</subject><subject>9/74</subject><subject>Amino Acid Sequence</subject><subject>AMPA receptors</subject><subject>Animals</subject><subject>Asymmetry</subject><subject>Binding sites</subject><subject>Brain</subject><subject>Calcium Channels - chemistry</subject><subject>Calcium Channels - metabolism</subject><subject>Calcium Channels - ultrastructure</subject><subject>Cellular signal transduction</subject><subject>Channel gating</subject><subject>Conformation</subject><subject>Cryoelectron Microscopy</subject><subject>Electron microscopy</subject><subject>Endoplasmic reticulum</subject><subject>Forebrain</subject><subject>Glutamate receptors</subject><subject>Hippocampus</subject><subject>Humanities and Social Sciences</subject><subject>Ion Channel Gating</subject><subject>Ligands</subject><subject>Lipid Metabolism</subject><subject>Lipid rafts</subject><subject>Lipids</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>multidisciplinary</subject><subject>Neurological research</subject><subject>Neuroplasticity</subject><subject>Observations</subject><subject>Physiological aspects</subject><subject>Protein Multimerization</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Proteins</subject><subject>Pyramidal cells</subject><subject>Pyramidal Cells - metabolism</subject><subject>Receptors</subject><subject>Receptors, AMPA - chemistry</subject><subject>Receptors, AMPA - metabolism</subject><subject>Receptors, AMPA - ultrastructure</subject><subject>Rotation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synaptic plasticity</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</subject><subject>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp90u9v1CAYB3BiNO48_Qd8YRp9ozFMKLTQNybNReeS-SM640vC0YeuSws3oEb_e5k3t505TZM2wIcvNM-D0GNKDilh8lXktJI1JiXFhNWUYXIHLSgXNea1FHfRgpBSYiJZfYAexHhOCKmo4PfRAeNENLRsFmh1pNPg-kK7rph8N4956F3hbaGLM0gQPPYm6QnCYIr2_ae26Mc5j3WCIoCBTfLhIbpn9Rjh0dV3ib6-fXO6eodPPh4dr9oTbIRoErZrKzkjGgA4Y9xYQ7qOk0aYymrGS2DCNtqSdSesLNecW95JaivRSStk07Eler3N3czrCToDLgU9qk0YJh1-Kq8HtbvihjPV--9K1JSKsskBz68Cgr-YISY1DdHAOGoHfo6qrFgtGiErnumzv-i5n4PLv5cVL0UluWxuVK9HUIOzPp9rLkNVW9dV1VSM1FnhPaoHB_mS3oEd8vSOf7rHm81woW6jwz0oPx1Mg9mb-mJnQzYJfqRezzGq4y-fd-3Lf9v29Nvqw64ut9oEH2MAe10SStRlp6ptp6rcqep3p-b3Ej25XczrLX9aMwO2BTEvuR7CTQX-E_sLaCHvZw</recordid><startdate>20210617</startdate><enddate>20210617</enddate><creator>Zhang, Danyang</creator><creator>Watson, Jake F.</creator><creator>Matthews, Peter M.</creator><creator>Cais, Ondrej</creator><creator>Greger, Ingo H.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7291-2581</orcidid><orcidid>https://orcid.org/0000-0002-8698-3823</orcidid></search><sort><creationdate>20210617</creationdate><title>Gating and modulation of a hetero-octameric AMPA glutamate receptor</title><author>Zhang, Danyang ; Watson, Jake F. ; Matthews, Peter M. ; Cais, Ondrej ; Greger, Ingo H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c779t-fbf8430aeee4334cfc0dd4097c5fa342e37f9af0bd7f82b44f4d81f57d8f789d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>101/28</topic><topic>631/378/2586</topic><topic>631/535/1258/1259</topic><topic>9/74</topic><topic>Amino Acid Sequence</topic><topic>AMPA receptors</topic><topic>Animals</topic><topic>Asymmetry</topic><topic>Binding sites</topic><topic>Brain</topic><topic>Calcium Channels - chemistry</topic><topic>Calcium Channels - metabolism</topic><topic>Calcium Channels - ultrastructure</topic><topic>Cellular signal transduction</topic><topic>Channel gating</topic><topic>Conformation</topic><topic>Cryoelectron Microscopy</topic><topic>Electron microscopy</topic><topic>Endoplasmic reticulum</topic><topic>Forebrain</topic><topic>Glutamate receptors</topic><topic>Hippocampus</topic><topic>Humanities and Social Sciences</topic><topic>Ion Channel Gating</topic><topic>Ligands</topic><topic>Lipid Metabolism</topic><topic>Lipid rafts</topic><topic>Lipids</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>multidisciplinary</topic><topic>Neurological research</topic><topic>Neuroplasticity</topic><topic>Observations</topic><topic>Physiological aspects</topic><topic>Protein Multimerization</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Proteins</topic><topic>Pyramidal cells</topic><topic>Pyramidal Cells - metabolism</topic><topic>Receptors</topic><topic>Receptors, AMPA - chemistry</topic><topic>Receptors, AMPA - metabolism</topic><topic>Receptors, AMPA - ultrastructure</topic><topic>Rotation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synaptic plasticity</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid</topic><topic>α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Danyang</creatorcontrib><creatorcontrib>Watson, Jake F.</creatorcontrib><creatorcontrib>Matthews, Peter M.</creatorcontrib><creatorcontrib>Cais, Ondrej</creatorcontrib><creatorcontrib>Greger, Ingo H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Danyang</au><au>Watson, Jake F.</au><au>Matthews, Peter M.</au><au>Cais, Ondrej</au><au>Greger, Ingo H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gating and modulation of a hetero-octameric AMPA glutamate receptor</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-06-17</date><risdate>2021</risdate><volume>594</volume><issue>7863</issue><spage>454</spage><epage>458</epage><pages>454-458</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning
1
. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength
2
. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1–GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties.
Analyses of AMPA receptor–auxiliary subunit complexes provide insights into the gating and modulation of the AMPA receptor by TARP-γ8 and CNIH2.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34079129</pmid><doi>10.1038/s41586-021-03613-0</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-7291-2581</orcidid><orcidid>https://orcid.org/0000-0002-8698-3823</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2021-06, Vol.594 (7863), p.454-458 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611729 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 101/28 631/378/2586 631/535/1258/1259 9/74 Amino Acid Sequence AMPA receptors Animals Asymmetry Binding sites Brain Calcium Channels - chemistry Calcium Channels - metabolism Calcium Channels - ultrastructure Cellular signal transduction Channel gating Conformation Cryoelectron Microscopy Electron microscopy Endoplasmic reticulum Forebrain Glutamate receptors Hippocampus Humanities and Social Sciences Ion Channel Gating Ligands Lipid Metabolism Lipid rafts Lipids Mice Mice, Inbred C57BL Microscopy Models, Molecular multidisciplinary Neurological research Neuroplasticity Observations Physiological aspects Protein Multimerization Protein Subunits - chemistry Protein Subunits - metabolism Proteins Pyramidal cells Pyramidal Cells - metabolism Receptors Receptors, AMPA - chemistry Receptors, AMPA - metabolism Receptors, AMPA - ultrastructure Rotation Science Science (multidisciplinary) Synaptic plasticity α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors |
title | Gating and modulation of a hetero-octameric AMPA glutamate receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A25%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gating%20and%20modulation%20of%20a%20hetero-octameric%20AMPA%20glutamate%20receptor&rft.jtitle=Nature%20(London)&rft.au=Zhang,%20Danyang&rft.date=2021-06-17&rft.volume=594&rft.issue=7863&rft.spage=454&rft.epage=458&rft.pages=454-458&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-03613-0&rft_dat=%3Cgale_pubme%3EA665595306%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2542758489&rft_id=info:pmid/34079129&rft_galeid=A665595306&rfr_iscdi=true |