AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root

The membrane potential reflects the difference between cytoplasmic and apoplastic electrical potentials and is essential for cellular operation. The application of the phytohormone auxin (3-indoleacetic acid (IAA)) causes instantaneous membrane depolarization in various cell types 1 – 6 , making dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2021-09, Vol.7 (9), p.1229-1238
Hauptverfasser: Serre, Nelson B. C., Kralík, Dominik, Yun, Ping, Slouka, Zdeněk, Shabala, Sergey, Fendrych, Matyáš
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1238
container_issue 9
container_start_page 1229
container_title Nature plants
container_volume 7
creator Serre, Nelson B. C.
Kralík, Dominik
Yun, Ping
Slouka, Zdeněk
Shabala, Sergey
Fendrych, Matyáš
description The membrane potential reflects the difference between cytoplasmic and apoplastic electrical potentials and is essential for cellular operation. The application of the phytohormone auxin (3-indoleacetic acid (IAA)) causes instantaneous membrane depolarization in various cell types 1 – 6 , making depolarization a hallmark of IAA-induced rapid responses. In root hairs, depolarization requires functional IAA transport and TIR1–AFB signalling 5 , but its physiological importance is not understood. Specifically in roots, auxin triggers rapid growth inhibition 7 – 9 (RGI), a process required for gravitropic bending. RGI is initiated by the TIR1–AFB co-receptors, with the AFB1 paralogue playing a crucial role 10 , 11 . The nature of the underlying rapid signalling is unknown, as well as the molecular machinery executing it. Even though the growth and depolarization responses to auxin show remarkable similarities, the importance of membrane depolarization for root growth inhibition and gravitropism is unclear. Here, by combining the DISBAC 2 (3) voltage sensor with microfluidics and vertical-stage microscopy, we show that rapid auxin-induced membrane depolarization tightly correlates with RGI. Rapid depolarization and RGI require the AFB1 auxin co-receptor. Finally, AFB1 is essential for the rapid formation of the membrane depolarization gradient across the gravistimulated root. These results clarify the role of AFB1 as the central receptor for rapid auxin responses. A probe to visualize membrane potential in real time is used to connect rapid auxin-induced membrane depolarization with root growth inhibition, which are both controlled by the AFB1 auxin receptor.
doi_str_mv 10.1038/s41477-021-00969-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2553525405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-48293842944332bec908c7e46cd28ba46967ac9bfe00b6c72efe4387e2183cfb3</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhS1URKvSP8CissSmmxS_EjsbpEtFH1IlNrC2Jo6T68qxg52gcn89Lre0hQUrW55vzvjMQegdJeeUcPUhCyqkrAijFSFt01a7V-iIkbouT1IdvLgfopOc7wghVNY1b8gbdMgFU4wpeYRgc_mJYhPDkqLPOMHsegzrvQs4uzGA9y6MeNmmuI5bPNmpSxAs7u0cPSS3g8XFgAu9SdC5Ps7Z5YKDdxAApxiXt-j1AD7bk8fzGH27_Pz14rq6_XJ1c7G5rYyQYqmEYi1XgrVCcM46a1qijLSiMT1THYimbSSYthssIV1jJLODFVxJy6jiZuj4Mfq4153XbrK9scUSeD0nN0H6qSM4_XcluK0e4w8tG0obxYvA2aNAit9Xmxc9uWys98VwXLNmZXs1qwWpC_r-H_Qurqls64GSnDJJZFsotqdMijknOzx9hhL9EKLeh6hLiPp3iHpXmk5f2nhq-RNZAfgeyKUURpueZ_9H9heOZKmu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2573127079</pqid></control><display><type>article</type><title>AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Serre, Nelson B. C. ; Kralík, Dominik ; Yun, Ping ; Slouka, Zdeněk ; Shabala, Sergey ; Fendrych, Matyáš</creator><creatorcontrib>Serre, Nelson B. C. ; Kralík, Dominik ; Yun, Ping ; Slouka, Zdeněk ; Shabala, Sergey ; Fendrych, Matyáš</creatorcontrib><description>The membrane potential reflects the difference between cytoplasmic and apoplastic electrical potentials and is essential for cellular operation. The application of the phytohormone auxin (3-indoleacetic acid (IAA)) causes instantaneous membrane depolarization in various cell types 1 – 6 , making depolarization a hallmark of IAA-induced rapid responses. In root hairs, depolarization requires functional IAA transport and TIR1–AFB signalling 5 , but its physiological importance is not understood. Specifically in roots, auxin triggers rapid growth inhibition 7 – 9 (RGI), a process required for gravitropic bending. RGI is initiated by the TIR1–AFB co-receptors, with the AFB1 paralogue playing a crucial role 10 , 11 . The nature of the underlying rapid signalling is unknown, as well as the molecular machinery executing it. Even though the growth and depolarization responses to auxin show remarkable similarities, the importance of membrane depolarization for root growth inhibition and gravitropism is unclear. Here, by combining the DISBAC 2 (3) voltage sensor with microfluidics and vertical-stage microscopy, we show that rapid auxin-induced membrane depolarization tightly correlates with RGI. Rapid depolarization and RGI require the AFB1 auxin co-receptor. Finally, AFB1 is essential for the rapid formation of the membrane depolarization gradient across the gravistimulated root. These results clarify the role of AFB1 as the central receptor for rapid auxin responses. A probe to visualize membrane potential in real time is used to connect rapid auxin-induced membrane depolarization with root growth inhibition, which are both controlled by the AFB1 auxin receptor.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-021-00969-z</identifier><identifier>PMID: 34282287</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/1736 ; 631/449/2675 ; Arabidopsis Proteins - metabolism ; Auxins ; Biomedical and Life Sciences ; Cell Membrane - drug effects ; Depolarization ; Gene Expression Regulation, Plant ; Genetic Variation ; Genotype ; Gravitropism ; Gravitropism - drug effects ; Indoleacetic acid ; Indoleacetic Acids - metabolism ; Letter ; Life Sciences ; Membrane potential ; Membrane Potentials - physiology ; Membranes ; Microfluidics ; Microscopy ; Molecular machines ; Physiology ; Plant growth ; Plant Growth Regulators - metabolism ; Plant hormones ; Plant Roots - metabolism ; Plant Sciences ; Plants, Genetically Modified - metabolism ; Receptors ; Root hairs ; Sensors ; Signal Transduction - drug effects ; Signaling ; Sucrose</subject><ispartof>Nature plants, 2021-09, Vol.7 (9), p.1229-1238</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021. corrected publication 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature Limited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-48293842944332bec908c7e46cd28ba46967ac9bfe00b6c72efe4387e2183cfb3</citedby><cites>FETCH-LOGICAL-c474t-48293842944332bec908c7e46cd28ba46967ac9bfe00b6c72efe4387e2183cfb3</cites><orcidid>0000-0003-1030-0683 ; 0000-0003-3585-1537 ; 0000-0002-9767-8699 ; 0000-0003-2176-7756</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-021-00969-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-021-00969-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34282287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Serre, Nelson B. C.</creatorcontrib><creatorcontrib>Kralík, Dominik</creatorcontrib><creatorcontrib>Yun, Ping</creatorcontrib><creatorcontrib>Slouka, Zdeněk</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Fendrych, Matyáš</creatorcontrib><title>AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>The membrane potential reflects the difference between cytoplasmic and apoplastic electrical potentials and is essential for cellular operation. The application of the phytohormone auxin (3-indoleacetic acid (IAA)) causes instantaneous membrane depolarization in various cell types 1 – 6 , making depolarization a hallmark of IAA-induced rapid responses. In root hairs, depolarization requires functional IAA transport and TIR1–AFB signalling 5 , but its physiological importance is not understood. Specifically in roots, auxin triggers rapid growth inhibition 7 – 9 (RGI), a process required for gravitropic bending. RGI is initiated by the TIR1–AFB co-receptors, with the AFB1 paralogue playing a crucial role 10 , 11 . The nature of the underlying rapid signalling is unknown, as well as the molecular machinery executing it. Even though the growth and depolarization responses to auxin show remarkable similarities, the importance of membrane depolarization for root growth inhibition and gravitropism is unclear. Here, by combining the DISBAC 2 (3) voltage sensor with microfluidics and vertical-stage microscopy, we show that rapid auxin-induced membrane depolarization tightly correlates with RGI. Rapid depolarization and RGI require the AFB1 auxin co-receptor. Finally, AFB1 is essential for the rapid formation of the membrane depolarization gradient across the gravistimulated root. These results clarify the role of AFB1 as the central receptor for rapid auxin responses. A probe to visualize membrane potential in real time is used to connect rapid auxin-induced membrane depolarization with root growth inhibition, which are both controlled by the AFB1 auxin receptor.</description><subject>631/449/1736</subject><subject>631/449/2675</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Auxins</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Membrane - drug effects</subject><subject>Depolarization</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic Variation</subject><subject>Genotype</subject><subject>Gravitropism</subject><subject>Gravitropism - drug effects</subject><subject>Indoleacetic acid</subject><subject>Indoleacetic Acids - metabolism</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Membrane potential</subject><subject>Membrane Potentials - physiology</subject><subject>Membranes</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Molecular machines</subject><subject>Physiology</subject><subject>Plant growth</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant hormones</subject><subject>Plant Roots - metabolism</subject><subject>Plant Sciences</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Receptors</subject><subject>Root hairs</subject><subject>Sensors</subject><subject>Signal Transduction - drug effects</subject><subject>Signaling</subject><subject>Sucrose</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kUtv1TAQhS1URKvSP8CissSmmxS_EjsbpEtFH1IlNrC2Jo6T68qxg52gcn89Lre0hQUrW55vzvjMQegdJeeUcPUhCyqkrAijFSFt01a7V-iIkbouT1IdvLgfopOc7wghVNY1b8gbdMgFU4wpeYRgc_mJYhPDkqLPOMHsegzrvQs4uzGA9y6MeNmmuI5bPNmpSxAs7u0cPSS3g8XFgAu9SdC5Ps7Z5YKDdxAApxiXt-j1AD7bk8fzGH27_Pz14rq6_XJ1c7G5rYyQYqmEYi1XgrVCcM46a1qijLSiMT1THYimbSSYthssIV1jJLODFVxJy6jiZuj4Mfq4153XbrK9scUSeD0nN0H6qSM4_XcluK0e4w8tG0obxYvA2aNAit9Xmxc9uWys98VwXLNmZXs1qwWpC_r-H_Qurqls64GSnDJJZFsotqdMijknOzx9hhL9EKLeh6hLiPp3iHpXmk5f2nhq-RNZAfgeyKUURpueZ_9H9heOZKmu</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Serre, Nelson B. C.</creator><creator>Kralík, Dominik</creator><creator>Yun, Ping</creator><creator>Slouka, Zdeněk</creator><creator>Shabala, Sergey</creator><creator>Fendrych, Matyáš</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1030-0683</orcidid><orcidid>https://orcid.org/0000-0003-3585-1537</orcidid><orcidid>https://orcid.org/0000-0002-9767-8699</orcidid><orcidid>https://orcid.org/0000-0003-2176-7756</orcidid></search><sort><creationdate>20210901</creationdate><title>AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root</title><author>Serre, Nelson B. C. ; Kralík, Dominik ; Yun, Ping ; Slouka, Zdeněk ; Shabala, Sergey ; Fendrych, Matyáš</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-48293842944332bec908c7e46cd28ba46967ac9bfe00b6c72efe4387e2183cfb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/449/1736</topic><topic>631/449/2675</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Auxins</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Membrane - drug effects</topic><topic>Depolarization</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic Variation</topic><topic>Genotype</topic><topic>Gravitropism</topic><topic>Gravitropism - drug effects</topic><topic>Indoleacetic acid</topic><topic>Indoleacetic Acids - metabolism</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Membrane potential</topic><topic>Membrane Potentials - physiology</topic><topic>Membranes</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Molecular machines</topic><topic>Physiology</topic><topic>Plant growth</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant hormones</topic><topic>Plant Roots - metabolism</topic><topic>Plant Sciences</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Receptors</topic><topic>Root hairs</topic><topic>Sensors</topic><topic>Signal Transduction - drug effects</topic><topic>Signaling</topic><topic>Sucrose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Serre, Nelson B. C.</creatorcontrib><creatorcontrib>Kralík, Dominik</creatorcontrib><creatorcontrib>Yun, Ping</creatorcontrib><creatorcontrib>Slouka, Zdeněk</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Fendrych, Matyáš</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Serre, Nelson B. C.</au><au>Kralík, Dominik</au><au>Yun, Ping</au><au>Slouka, Zdeněk</au><au>Shabala, Sergey</au><au>Fendrych, Matyáš</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>7</volume><issue>9</issue><spage>1229</spage><epage>1238</epage><pages>1229-1238</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>The membrane potential reflects the difference between cytoplasmic and apoplastic electrical potentials and is essential for cellular operation. The application of the phytohormone auxin (3-indoleacetic acid (IAA)) causes instantaneous membrane depolarization in various cell types 1 – 6 , making depolarization a hallmark of IAA-induced rapid responses. In root hairs, depolarization requires functional IAA transport and TIR1–AFB signalling 5 , but its physiological importance is not understood. Specifically in roots, auxin triggers rapid growth inhibition 7 – 9 (RGI), a process required for gravitropic bending. RGI is initiated by the TIR1–AFB co-receptors, with the AFB1 paralogue playing a crucial role 10 , 11 . The nature of the underlying rapid signalling is unknown, as well as the molecular machinery executing it. Even though the growth and depolarization responses to auxin show remarkable similarities, the importance of membrane depolarization for root growth inhibition and gravitropism is unclear. Here, by combining the DISBAC 2 (3) voltage sensor with microfluidics and vertical-stage microscopy, we show that rapid auxin-induced membrane depolarization tightly correlates with RGI. Rapid depolarization and RGI require the AFB1 auxin co-receptor. Finally, AFB1 is essential for the rapid formation of the membrane depolarization gradient across the gravistimulated root. These results clarify the role of AFB1 as the central receptor for rapid auxin responses. A probe to visualize membrane potential in real time is used to connect rapid auxin-induced membrane depolarization with root growth inhibition, which are both controlled by the AFB1 auxin receptor.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34282287</pmid><doi>10.1038/s41477-021-00969-z</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1030-0683</orcidid><orcidid>https://orcid.org/0000-0003-3585-1537</orcidid><orcidid>https://orcid.org/0000-0002-9767-8699</orcidid><orcidid>https://orcid.org/0000-0003-2176-7756</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-0278
ispartof Nature plants, 2021-09, Vol.7 (9), p.1229-1238
issn 2055-0278
2055-0278
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611683
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/449/1736
631/449/2675
Arabidopsis Proteins - metabolism
Auxins
Biomedical and Life Sciences
Cell Membrane - drug effects
Depolarization
Gene Expression Regulation, Plant
Genetic Variation
Genotype
Gravitropism
Gravitropism - drug effects
Indoleacetic acid
Indoleacetic Acids - metabolism
Letter
Life Sciences
Membrane potential
Membrane Potentials - physiology
Membranes
Microfluidics
Microscopy
Molecular machines
Physiology
Plant growth
Plant Growth Regulators - metabolism
Plant hormones
Plant Roots - metabolism
Plant Sciences
Plants, Genetically Modified - metabolism
Receptors
Root hairs
Sensors
Signal Transduction - drug effects
Signaling
Sucrose
title AFB1 controls rapid auxin signalling through membrane depolarization in Arabidopsis thaliana root
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFB1%20controls%20rapid%20auxin%20signalling%20through%20membrane%20depolarization%20in%20Arabidopsis%20thaliana%20root&rft.jtitle=Nature%20plants&rft.au=Serre,%20Nelson%20B.%20C.&rft.date=2021-09-01&rft.volume=7&rft.issue=9&rft.spage=1229&rft.epage=1238&rft.pages=1229-1238&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-021-00969-z&rft_dat=%3Cproquest_pubme%3E2553525405%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2573127079&rft_id=info:pmid/34282287&rfr_iscdi=true