Coherent spin-wave transport in an antiferromagnet
Magnonics is a research field complementary to spintronics, in which the quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation 1 – 3 . The development of ultrafast, nanoscale magnonic logic circuits calls for new tools and materials to generate coheren...
Gespeichert in:
Veröffentlicht in: | Nature physics 2021-09, Vol.17 (9), p.1001-1006 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1006 |
---|---|
container_issue | 9 |
container_start_page | 1001 |
container_title | Nature physics |
container_volume | 17 |
creator | Hortensius, J. R. Afanasiev, D. Matthiesen, M. Leenders, R. Citro, R. Kimel, A. V. Mikhaylovskiy, R. V. Ivanov, B. A. Caviglia, A. D. |
description | Magnonics is a research field complementary to spintronics, in which the quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation
1
–
3
. The development of ultrafast, nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high and wavelengths as short as possible
4
,
5
. Antiferromagnets can host spin waves at terahertz frequencies and are therefore seen as a future platform for the fastest and least dissipative transfer of information
6
–
11
. However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometre-scale wavepacket of coherent propagating magnons in the antiferromagnetic oxide dysprosium orthoferrite using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent terahertz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate into the material with supersonic velocities of more than 13 km s
–1
. This source of coherent short-wavelength spin carriers opens up new prospects for terahertz antiferromagnetic magnonics and coherence-mediated logic devices at terahertz frequencies.
Ultrashort light pulses generate nanometre-scale wavepackets of magnons that propagate coherently and at high speed in an antiferromagnet. This pushes antiferromagnetic magnonics forward as a future platform for information processing. |
doi_str_mv | 10.1038/s41567-021-01290-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2570300471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-77e68cd12fb33a965cc23b321508b51d2b87c9daa005e6b886e5f7d02c2c84403</originalsourceid><addsrcrecordid>eNp9kctKLDEQhoMc8f4CLmTgbNy0pirX3ggyeAPBja5DOp0eW2aSMenxcN7ejKPjZSEEKlBf_XX5CTkEegKU6dPMQUhVUYSKAta04htkBxQXFXINf9Z_xbbJbs5PlHKUwLbINuMCUNVsh-A4PvrkwzDK8z5U_-yLHw3JhjyPaRj1YWSXb-g7n1Kc2Unwwz7Z7Ow0-4P3uEceLi_ux9fV7d3Vzfj8tnK8lkOllJfatYBdw5itpXAOWcMQBNWNgBYbrVzdWkup8LLRWnrRqZaiQ6c5p2yPnK1054tm5ltXhkx2auapn9n030Tbm--Z0D-aSXwxSgJIJorA8btAis8Lnwcz67Pz06kNPi6yQaEQQSNjBf37A32KixTKekuKsnI6BYXCFeVSzDn5bj0MULO0xKwsMcUS82aJ4aXo6Osa65IPDwrAVkAuqTDx6bP3L7KvEsWWZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570300471</pqid></control><display><type>article</type><title>Coherent spin-wave transport in an antiferromagnet</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Hortensius, J. R. ; Afanasiev, D. ; Matthiesen, M. ; Leenders, R. ; Citro, R. ; Kimel, A. V. ; Mikhaylovskiy, R. V. ; Ivanov, B. A. ; Caviglia, A. D.</creator><creatorcontrib>Hortensius, J. R. ; Afanasiev, D. ; Matthiesen, M. ; Leenders, R. ; Citro, R. ; Kimel, A. V. ; Mikhaylovskiy, R. V. ; Ivanov, B. A. ; Caviglia, A. D.</creatorcontrib><description>Magnonics is a research field complementary to spintronics, in which the quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation
1
–
3
. The development of ultrafast, nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high and wavelengths as short as possible
4
,
5
. Antiferromagnets can host spin waves at terahertz frequencies and are therefore seen as a future platform for the fastest and least dissipative transfer of information
6
–
11
. However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometre-scale wavepacket of coherent propagating magnons in the antiferromagnetic oxide dysprosium orthoferrite using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent terahertz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate into the material with supersonic velocities of more than 13 km s
–1
. This source of coherent short-wavelength spin carriers opens up new prospects for terahertz antiferromagnetic magnonics and coherence-mediated logic devices at terahertz frequencies.
Ultrashort light pulses generate nanometre-scale wavepackets of magnons that propagate coherently and at high speed in an antiferromagnet. This pushes antiferromagnetic magnonics forward as a future platform for information processing.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-021-01290-4</identifier><identifier>PMID: 34512793</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/119/2793 ; 639/301/119/997 ; 639/624/400/1101 ; 639/766/119/1001 ; Antiferromagnetism ; Atomic ; Broadband ; Classical and Continuum Physics ; Coherence ; Complex Systems ; Condensed Matter Physics ; Data processing ; Dysprosium ; Electron spin ; Energy ; Geometry ; Letter ; Logic circuits ; Magnons ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Propagation ; Spintronics ; Terahertz frequencies ; Theoretical ; Velocity ; Wave packets ; Wave propagation ; Wavelengths</subject><ispartof>Nature physics, 2021-09, Vol.17 (9), p.1001-1006</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-77e68cd12fb33a965cc23b321508b51d2b87c9daa005e6b886e5f7d02c2c84403</citedby><cites>FETCH-LOGICAL-c496t-77e68cd12fb33a965cc23b321508b51d2b87c9daa005e6b886e5f7d02c2c84403</cites><orcidid>0000-0001-6023-3074 ; 0000-0003-3780-0872 ; 0000-0002-3896-4759 ; 0000-0001-9650-3371 ; 0000-0001-6726-3479 ; 0000-0002-0709-042X ; 0000-0001-6482-2060 ; 0000-0003-2320-9766 ; 0000-0002-2189-6470</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34512793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hortensius, J. R.</creatorcontrib><creatorcontrib>Afanasiev, D.</creatorcontrib><creatorcontrib>Matthiesen, M.</creatorcontrib><creatorcontrib>Leenders, R.</creatorcontrib><creatorcontrib>Citro, R.</creatorcontrib><creatorcontrib>Kimel, A. V.</creatorcontrib><creatorcontrib>Mikhaylovskiy, R. V.</creatorcontrib><creatorcontrib>Ivanov, B. A.</creatorcontrib><creatorcontrib>Caviglia, A. D.</creatorcontrib><title>Coherent spin-wave transport in an antiferromagnet</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><addtitle>Nat Phys</addtitle><description>Magnonics is a research field complementary to spintronics, in which the quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation
1
–
3
. The development of ultrafast, nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high and wavelengths as short as possible
4
,
5
. Antiferromagnets can host spin waves at terahertz frequencies and are therefore seen as a future platform for the fastest and least dissipative transfer of information
6
–
11
. However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometre-scale wavepacket of coherent propagating magnons in the antiferromagnetic oxide dysprosium orthoferrite using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent terahertz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate into the material with supersonic velocities of more than 13 km s
–1
. This source of coherent short-wavelength spin carriers opens up new prospects for terahertz antiferromagnetic magnonics and coherence-mediated logic devices at terahertz frequencies.
Ultrashort light pulses generate nanometre-scale wavepackets of magnons that propagate coherently and at high speed in an antiferromagnet. This pushes antiferromagnetic magnonics forward as a future platform for information processing.</description><subject>140/125</subject><subject>639/301/119/2793</subject><subject>639/301/119/997</subject><subject>639/624/400/1101</subject><subject>639/766/119/1001</subject><subject>Antiferromagnetism</subject><subject>Atomic</subject><subject>Broadband</subject><subject>Classical and Continuum Physics</subject><subject>Coherence</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Data processing</subject><subject>Dysprosium</subject><subject>Electron spin</subject><subject>Energy</subject><subject>Geometry</subject><subject>Letter</subject><subject>Logic circuits</subject><subject>Magnons</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Propagation</subject><subject>Spintronics</subject><subject>Terahertz frequencies</subject><subject>Theoretical</subject><subject>Velocity</subject><subject>Wave packets</subject><subject>Wave propagation</subject><subject>Wavelengths</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctKLDEQhoMc8f4CLmTgbNy0pirX3ggyeAPBja5DOp0eW2aSMenxcN7ejKPjZSEEKlBf_XX5CTkEegKU6dPMQUhVUYSKAta04htkBxQXFXINf9Z_xbbJbs5PlHKUwLbINuMCUNVsh-A4PvrkwzDK8z5U_-yLHw3JhjyPaRj1YWSXb-g7n1Kc2Unwwz7Z7Ow0-4P3uEceLi_ux9fV7d3Vzfj8tnK8lkOllJfatYBdw5itpXAOWcMQBNWNgBYbrVzdWkup8LLRWnrRqZaiQ6c5p2yPnK1054tm5ltXhkx2auapn9n030Tbm--Z0D-aSXwxSgJIJorA8btAis8Lnwcz67Pz06kNPi6yQaEQQSNjBf37A32KixTKekuKsnI6BYXCFeVSzDn5bj0MULO0xKwsMcUS82aJ4aXo6Osa65IPDwrAVkAuqTDx6bP3L7KvEsWWZg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Hortensius, J. R.</creator><creator>Afanasiev, D.</creator><creator>Matthiesen, M.</creator><creator>Leenders, R.</creator><creator>Citro, R.</creator><creator>Kimel, A. V.</creator><creator>Mikhaylovskiy, R. V.</creator><creator>Ivanov, B. A.</creator><creator>Caviglia, A. D.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6023-3074</orcidid><orcidid>https://orcid.org/0000-0003-3780-0872</orcidid><orcidid>https://orcid.org/0000-0002-3896-4759</orcidid><orcidid>https://orcid.org/0000-0001-9650-3371</orcidid><orcidid>https://orcid.org/0000-0001-6726-3479</orcidid><orcidid>https://orcid.org/0000-0002-0709-042X</orcidid><orcidid>https://orcid.org/0000-0001-6482-2060</orcidid><orcidid>https://orcid.org/0000-0003-2320-9766</orcidid><orcidid>https://orcid.org/0000-0002-2189-6470</orcidid></search><sort><creationdate>20210901</creationdate><title>Coherent spin-wave transport in an antiferromagnet</title><author>Hortensius, J. R. ; Afanasiev, D. ; Matthiesen, M. ; Leenders, R. ; Citro, R. ; Kimel, A. V. ; Mikhaylovskiy, R. V. ; Ivanov, B. A. ; Caviglia, A. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-77e68cd12fb33a965cc23b321508b51d2b87c9daa005e6b886e5f7d02c2c84403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>140/125</topic><topic>639/301/119/2793</topic><topic>639/301/119/997</topic><topic>639/624/400/1101</topic><topic>639/766/119/1001</topic><topic>Antiferromagnetism</topic><topic>Atomic</topic><topic>Broadband</topic><topic>Classical and Continuum Physics</topic><topic>Coherence</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Data processing</topic><topic>Dysprosium</topic><topic>Electron spin</topic><topic>Energy</topic><topic>Geometry</topic><topic>Letter</topic><topic>Logic circuits</topic><topic>Magnons</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Propagation</topic><topic>Spintronics</topic><topic>Terahertz frequencies</topic><topic>Theoretical</topic><topic>Velocity</topic><topic>Wave packets</topic><topic>Wave propagation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hortensius, J. R.</creatorcontrib><creatorcontrib>Afanasiev, D.</creatorcontrib><creatorcontrib>Matthiesen, M.</creatorcontrib><creatorcontrib>Leenders, R.</creatorcontrib><creatorcontrib>Citro, R.</creatorcontrib><creatorcontrib>Kimel, A. V.</creatorcontrib><creatorcontrib>Mikhaylovskiy, R. V.</creatorcontrib><creatorcontrib>Ivanov, B. A.</creatorcontrib><creatorcontrib>Caviglia, A. D.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hortensius, J. R.</au><au>Afanasiev, D.</au><au>Matthiesen, M.</au><au>Leenders, R.</au><au>Citro, R.</au><au>Kimel, A. V.</au><au>Mikhaylovskiy, R. V.</au><au>Ivanov, B. A.</au><au>Caviglia, A. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coherent spin-wave transport in an antiferromagnet</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><addtitle>Nat Phys</addtitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issue>9</issue><spage>1001</spage><epage>1006</epage><pages>1001-1006</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Magnonics is a research field complementary to spintronics, in which the quanta of spin waves (magnons) replace electrons as information carriers, promising lower dissipation
1
–
3
. The development of ultrafast, nanoscale magnonic logic circuits calls for new tools and materials to generate coherent spin waves with frequencies as high and wavelengths as short as possible
4
,
5
. Antiferromagnets can host spin waves at terahertz frequencies and are therefore seen as a future platform for the fastest and least dissipative transfer of information
6
–
11
. However, the generation of short-wavelength coherent propagating magnons in antiferromagnets has so far remained elusive. Here we report the efficient emission and detection of a nanometre-scale wavepacket of coherent propagating magnons in the antiferromagnetic oxide dysprosium orthoferrite using ultrashort pulses of light. The subwavelength confinement of the laser field due to large absorption creates a strongly non-uniform spin excitation profile, enabling the propagation of a broadband continuum of coherent terahertz spin waves. The wavepacket contains magnons with a shortest detected wavelength of 125 nm that propagate into the material with supersonic velocities of more than 13 km s
–1
. This source of coherent short-wavelength spin carriers opens up new prospects for terahertz antiferromagnetic magnonics and coherence-mediated logic devices at terahertz frequencies.
Ultrashort light pulses generate nanometre-scale wavepackets of magnons that propagate coherently and at high speed in an antiferromagnet. This pushes antiferromagnetic magnonics forward as a future platform for information processing.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34512793</pmid><doi>10.1038/s41567-021-01290-4</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-6023-3074</orcidid><orcidid>https://orcid.org/0000-0003-3780-0872</orcidid><orcidid>https://orcid.org/0000-0002-3896-4759</orcidid><orcidid>https://orcid.org/0000-0001-9650-3371</orcidid><orcidid>https://orcid.org/0000-0001-6726-3479</orcidid><orcidid>https://orcid.org/0000-0002-0709-042X</orcidid><orcidid>https://orcid.org/0000-0001-6482-2060</orcidid><orcidid>https://orcid.org/0000-0003-2320-9766</orcidid><orcidid>https://orcid.org/0000-0002-2189-6470</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2021-09, Vol.17 (9), p.1001-1006 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611635 |
source | Nature; Alma/SFX Local Collection |
subjects | 140/125 639/301/119/2793 639/301/119/997 639/624/400/1101 639/766/119/1001 Antiferromagnetism Atomic Broadband Classical and Continuum Physics Coherence Complex Systems Condensed Matter Physics Data processing Dysprosium Electron spin Energy Geometry Letter Logic circuits Magnons Mathematical and Computational Physics Molecular Optical and Plasma Physics Phase transitions Physics Physics and Astronomy Propagation Spintronics Terahertz frequencies Theoretical Velocity Wave packets Wave propagation Wavelengths |
title | Coherent spin-wave transport in an antiferromagnet |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A29%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coherent%20spin-wave%20transport%20in%20an%20antiferromagnet&rft.jtitle=Nature%20physics&rft.au=Hortensius,%20J.%20R.&rft.date=2021-09-01&rft.volume=17&rft.issue=9&rft.spage=1001&rft.epage=1006&rft.pages=1001-1006&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-021-01290-4&rft_dat=%3Cproquest_pubme%3E2570300471%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2570300471&rft_id=info:pmid/34512793&rfr_iscdi=true |