Cerebellar granule cell axons support high-dimensional representations

In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature neuroscience 2021-08, Vol.24 (8), p.1142-1150
Hauptverfasser: Lanore, Frederic, Cayco-Gajic, N. Alex, Gurnani, Harsha, Coyle, Diccon, Silver, R. Angus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1150
container_issue 8
container_start_page 1142
container_title Nature neuroscience
container_volume 24
creator Lanore, Frederic
Cayco-Gajic, N. Alex
Gurnani, Harsha
Coyle, Diccon
Silver, R. Angus
description In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell ‘decoders’, we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures. By recording from hundreds of cerebellar granule cell axons with three-dimensional two-photon calcium imaging, Lanore et al. show that population activity is high-dimensional and that quiet wakeful and active states are orthogonally arranged in neuronal activity space.
doi_str_mv 10.1038/s41593-021-00873-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670484649</galeid><sourcerecordid>A670484649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-575438609f8c66560fd84d131f933058bca4cc6bfc3b49b4c0ea30b0e1f8770a3</originalsourceid><addsrcrecordid>eNp9kktr3DAUhU1padK0f6CLYugmWTiVrKc3hWFoHjBQ6GMtZPnao2BLU8kO039fOc6jE0rRQtLVd46ky8my9xidY0Tkp0gxq0iBSlwgJAUp9i-yY8woL7Ao-cu0RpUoeMn4UfYmxhuEkGCyep0dEYq5JBQdZxdrCFBD3-uQd0G7qYfcpG2u997FPE67nQ9jvrXdtmjsAC5a73SfB9gFiOBGPaZCfJu9anUf4d39fJL9vPjyY31VbL5eXq9Xm8JwVI0FE4wSmZatNJwzjtpG0gYT3FaEICZro6kxvG4NqWlVU4NAE1QjwK0UAmlykn1efHdTPUBj0gOC7tUu2EGH38prqw5PnN2qzt8qwTGmvEwGZ4vB9pnsarVRcw0RwkVF5S1O7On9ZcH_miCOarBxbo524KeoSkYZq0pJq4R-fIbe-CmkRs0UE-lvmIonqtM9KOtan95oZlO14gJRSfmd1_k_qDQaGKzxDlqb6geCswNBYkbYj52eYlTX378dsuXCmuBjDNA-NgEjNadKLalSKVXqLlVqn0Qf_u76o-QhRgkgCxDTkesgPH3_P7Z_ABhJ1ik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557305147</pqid></control><display><type>article</type><title>Cerebellar granule cell axons support high-dimensional representations</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lanore, Frederic ; Cayco-Gajic, N. Alex ; Gurnani, Harsha ; Coyle, Diccon ; Silver, R. Angus</creator><creatorcontrib>Lanore, Frederic ; Cayco-Gajic, N. Alex ; Gurnani, Harsha ; Coyle, Diccon ; Silver, R. Angus</creatorcontrib><description>In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell ‘decoders’, we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures. By recording from hundreds of cerebellar granule cell axons with three-dimensional two-photon calcium imaging, Lanore et al. show that population activity is high-dimensional and that quiet wakeful and active states are orthogonally arranged in neuronal activity space.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-021-00873-x</identifier><identifier>PMID: 34168340</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/2629 ; 631/378/3920 ; Acousto-optics ; Activity patterns ; Animal Genetics and Genomics ; Animals ; Associative learning ; Axons ; Axons - physiology ; Behavior, Animal - physiology ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain cells ; Brain research ; Calcium imaging ; Cerebellum ; Cerebellum - physiology ; Cerebral cortex ; Circuits ; Cortex (somatosensory) ; Decoders ; Female ; Granular materials ; Imaging, Three-Dimensional - methods ; Life Sciences ; Locomotion - physiology ; Male ; Mental representation ; Mice ; Mice, Transgenic ; Motor skill learning ; Motor task performance ; Neocortex ; Neurobiology ; Neuroimaging ; Neurons and Cognition ; Neurosciences ; Perceptual-motor processes ; Photons ; Physiological aspects ; Population ; Psychological aspects ; Representations ; Subspaces</subject><ispartof>Nature neuroscience, 2021-08, Vol.24 (8), p.1142-1150</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-575438609f8c66560fd84d131f933058bca4cc6bfc3b49b4c0ea30b0e1f8770a3</citedby><cites>FETCH-LOGICAL-c609t-575438609f8c66560fd84d131f933058bca4cc6bfc3b49b4c0ea30b0e1f8770a3</cites><orcidid>0000-0003-4316-6855 ; 0000-0002-5480-6638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-021-00873-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-021-00873-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34168340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03367948$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lanore, Frederic</creatorcontrib><creatorcontrib>Cayco-Gajic, N. Alex</creatorcontrib><creatorcontrib>Gurnani, Harsha</creatorcontrib><creatorcontrib>Coyle, Diccon</creatorcontrib><creatorcontrib>Silver, R. Angus</creatorcontrib><title>Cerebellar granule cell axons support high-dimensional representations</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell ‘decoders’, we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures. By recording from hundreds of cerebellar granule cell axons with three-dimensional two-photon calcium imaging, Lanore et al. show that population activity is high-dimensional and that quiet wakeful and active states are orthogonally arranged in neuronal activity space.</description><subject>631/378/2629</subject><subject>631/378/3920</subject><subject>Acousto-optics</subject><subject>Activity patterns</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Associative learning</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Behavior, Animal - physiology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain cells</subject><subject>Brain research</subject><subject>Calcium imaging</subject><subject>Cerebellum</subject><subject>Cerebellum - physiology</subject><subject>Cerebral cortex</subject><subject>Circuits</subject><subject>Cortex (somatosensory)</subject><subject>Decoders</subject><subject>Female</subject><subject>Granular materials</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Life Sciences</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Mental representation</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motor skill learning</subject><subject>Motor task performance</subject><subject>Neocortex</subject><subject>Neurobiology</subject><subject>Neuroimaging</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Perceptual-motor processes</subject><subject>Photons</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Psychological aspects</subject><subject>Representations</subject><subject>Subspaces</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kktr3DAUhU1padK0f6CLYugmWTiVrKc3hWFoHjBQ6GMtZPnao2BLU8kO039fOc6jE0rRQtLVd46ky8my9xidY0Tkp0gxq0iBSlwgJAUp9i-yY8woL7Ao-cu0RpUoeMn4UfYmxhuEkGCyep0dEYq5JBQdZxdrCFBD3-uQd0G7qYfcpG2u997FPE67nQ9jvrXdtmjsAC5a73SfB9gFiOBGPaZCfJu9anUf4d39fJL9vPjyY31VbL5eXq9Xm8JwVI0FE4wSmZatNJwzjtpG0gYT3FaEICZro6kxvG4NqWlVU4NAE1QjwK0UAmlykn1efHdTPUBj0gOC7tUu2EGH38prqw5PnN2qzt8qwTGmvEwGZ4vB9pnsarVRcw0RwkVF5S1O7On9ZcH_miCOarBxbo524KeoSkYZq0pJq4R-fIbe-CmkRs0UE-lvmIonqtM9KOtan95oZlO14gJRSfmd1_k_qDQaGKzxDlqb6geCswNBYkbYj52eYlTX378dsuXCmuBjDNA-NgEjNadKLalSKVXqLlVqn0Qf_u76o-QhRgkgCxDTkesgPH3_P7Z_ABhJ1ik</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lanore, Frederic</creator><creator>Cayco-Gajic, N. Alex</creator><creator>Gurnani, Harsha</creator><creator>Coyle, Diccon</creator><creator>Silver, R. Angus</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4316-6855</orcidid><orcidid>https://orcid.org/0000-0002-5480-6638</orcidid></search><sort><creationdate>20210801</creationdate><title>Cerebellar granule cell axons support high-dimensional representations</title><author>Lanore, Frederic ; Cayco-Gajic, N. Alex ; Gurnani, Harsha ; Coyle, Diccon ; Silver, R. Angus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-575438609f8c66560fd84d131f933058bca4cc6bfc3b49b4c0ea30b0e1f8770a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/378/2629</topic><topic>631/378/3920</topic><topic>Acousto-optics</topic><topic>Activity patterns</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Associative learning</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Behavior, Animal - physiology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain cells</topic><topic>Brain research</topic><topic>Calcium imaging</topic><topic>Cerebellum</topic><topic>Cerebellum - physiology</topic><topic>Cerebral cortex</topic><topic>Circuits</topic><topic>Cortex (somatosensory)</topic><topic>Decoders</topic><topic>Female</topic><topic>Granular materials</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Life Sciences</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Mental representation</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motor skill learning</topic><topic>Motor task performance</topic><topic>Neocortex</topic><topic>Neurobiology</topic><topic>Neuroimaging</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Perceptual-motor processes</topic><topic>Photons</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Psychological aspects</topic><topic>Representations</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanore, Frederic</creatorcontrib><creatorcontrib>Cayco-Gajic, N. Alex</creatorcontrib><creatorcontrib>Gurnani, Harsha</creatorcontrib><creatorcontrib>Coyle, Diccon</creatorcontrib><creatorcontrib>Silver, R. Angus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanore, Frederic</au><au>Cayco-Gajic, N. Alex</au><au>Gurnani, Harsha</au><au>Coyle, Diccon</au><au>Silver, R. Angus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cerebellar granule cell axons support high-dimensional representations</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>24</volume><issue>8</issue><spage>1142</spage><epage>1150</epage><pages>1142-1150</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell ‘decoders’, we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures. By recording from hundreds of cerebellar granule cell axons with three-dimensional two-photon calcium imaging, Lanore et al. show that population activity is high-dimensional and that quiet wakeful and active states are orthogonally arranged in neuronal activity space.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34168340</pmid><doi>10.1038/s41593-021-00873-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4316-6855</orcidid><orcidid>https://orcid.org/0000-0002-5480-6638</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-6256
ispartof Nature neuroscience, 2021-08, Vol.24 (8), p.1142-1150
issn 1097-6256
1546-1726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611462
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects 631/378/2629
631/378/3920
Acousto-optics
Activity patterns
Animal Genetics and Genomics
Animals
Associative learning
Axons
Axons - physiology
Behavior, Animal - physiology
Behavioral Sciences
Biological Techniques
Biomedical and Life Sciences
Biomedicine
Brain cells
Brain research
Calcium imaging
Cerebellum
Cerebellum - physiology
Cerebral cortex
Circuits
Cortex (somatosensory)
Decoders
Female
Granular materials
Imaging, Three-Dimensional - methods
Life Sciences
Locomotion - physiology
Male
Mental representation
Mice
Mice, Transgenic
Motor skill learning
Motor task performance
Neocortex
Neurobiology
Neuroimaging
Neurons and Cognition
Neurosciences
Perceptual-motor processes
Photons
Physiological aspects
Population
Psychological aspects
Representations
Subspaces
title Cerebellar granule cell axons support high-dimensional representations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cerebellar%20granule%20cell%20axons%20support%20high-dimensional%20representations&rft.jtitle=Nature%20neuroscience&rft.au=Lanore,%20Frederic&rft.date=2021-08-01&rft.volume=24&rft.issue=8&rft.spage=1142&rft.epage=1150&rft.pages=1142-1150&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-021-00873-x&rft_dat=%3Cgale_pubme%3EA670484649%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557305147&rft_id=info:pmid/34168340&rft_galeid=A670484649&rfr_iscdi=true