Cerebellar granule cell axons support high-dimensional representations
In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimension...
Gespeichert in:
Veröffentlicht in: | Nature neuroscience 2021-08, Vol.24 (8), p.1142-1150 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1150 |
---|---|
container_issue | 8 |
container_start_page | 1142 |
container_title | Nature neuroscience |
container_volume | 24 |
creator | Lanore, Frederic Cayco-Gajic, N. Alex Gurnani, Harsha Coyle, Diccon Silver, R. Angus |
description | In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell ‘decoders’, we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures.
By recording from hundreds of cerebellar granule cell axons with three-dimensional two-photon calcium imaging, Lanore et al. show that population activity is high-dimensional and that quiet wakeful and active states are orthogonally arranged in neuronal activity space. |
doi_str_mv | 10.1038/s41593-021-00873-x |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611462</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A670484649</galeid><sourcerecordid>A670484649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-575438609f8c66560fd84d131f933058bca4cc6bfc3b49b4c0ea30b0e1f8770a3</originalsourceid><addsrcrecordid>eNp9kktr3DAUhU1padK0f6CLYugmWTiVrKc3hWFoHjBQ6GMtZPnao2BLU8kO039fOc6jE0rRQtLVd46ky8my9xidY0Tkp0gxq0iBSlwgJAUp9i-yY8woL7Ao-cu0RpUoeMn4UfYmxhuEkGCyep0dEYq5JBQdZxdrCFBD3-uQd0G7qYfcpG2u997FPE67nQ9jvrXdtmjsAC5a73SfB9gFiOBGPaZCfJu9anUf4d39fJL9vPjyY31VbL5eXq9Xm8JwVI0FE4wSmZatNJwzjtpG0gYT3FaEICZro6kxvG4NqWlVU4NAE1QjwK0UAmlykn1efHdTPUBj0gOC7tUu2EGH38prqw5PnN2qzt8qwTGmvEwGZ4vB9pnsarVRcw0RwkVF5S1O7On9ZcH_miCOarBxbo524KeoSkYZq0pJq4R-fIbe-CmkRs0UE-lvmIonqtM9KOtan95oZlO14gJRSfmd1_k_qDQaGKzxDlqb6geCswNBYkbYj52eYlTX378dsuXCmuBjDNA-NgEjNadKLalSKVXqLlVqn0Qf_u76o-QhRgkgCxDTkesgPH3_P7Z_ABhJ1ik</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557305147</pqid></control><display><type>article</type><title>Cerebellar granule cell axons support high-dimensional representations</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lanore, Frederic ; Cayco-Gajic, N. Alex ; Gurnani, Harsha ; Coyle, Diccon ; Silver, R. Angus</creator><creatorcontrib>Lanore, Frederic ; Cayco-Gajic, N. Alex ; Gurnani, Harsha ; Coyle, Diccon ; Silver, R. Angus</creatorcontrib><description>In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell ‘decoders’, we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures.
By recording from hundreds of cerebellar granule cell axons with three-dimensional two-photon calcium imaging, Lanore et al. show that population activity is high-dimensional and that quiet wakeful and active states are orthogonally arranged in neuronal activity space.</description><identifier>ISSN: 1097-6256</identifier><identifier>EISSN: 1546-1726</identifier><identifier>DOI: 10.1038/s41593-021-00873-x</identifier><identifier>PMID: 34168340</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/378/2629 ; 631/378/3920 ; Acousto-optics ; Activity patterns ; Animal Genetics and Genomics ; Animals ; Associative learning ; Axons ; Axons - physiology ; Behavior, Animal - physiology ; Behavioral Sciences ; Biological Techniques ; Biomedical and Life Sciences ; Biomedicine ; Brain cells ; Brain research ; Calcium imaging ; Cerebellum ; Cerebellum - physiology ; Cerebral cortex ; Circuits ; Cortex (somatosensory) ; Decoders ; Female ; Granular materials ; Imaging, Three-Dimensional - methods ; Life Sciences ; Locomotion - physiology ; Male ; Mental representation ; Mice ; Mice, Transgenic ; Motor skill learning ; Motor task performance ; Neocortex ; Neurobiology ; Neuroimaging ; Neurons and Cognition ; Neurosciences ; Perceptual-motor processes ; Photons ; Physiological aspects ; Population ; Psychological aspects ; Representations ; Subspaces</subject><ispartof>Nature neuroscience, 2021-08, Vol.24 (8), p.1142-1150</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021</rights><rights>2021. The Author(s), under exclusive licence to Springer Nature America, Inc.</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-575438609f8c66560fd84d131f933058bca4cc6bfc3b49b4c0ea30b0e1f8770a3</citedby><cites>FETCH-LOGICAL-c609t-575438609f8c66560fd84d131f933058bca4cc6bfc3b49b4c0ea30b0e1f8770a3</cites><orcidid>0000-0003-4316-6855 ; 0000-0002-5480-6638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41593-021-00873-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41593-021-00873-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34168340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03367948$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lanore, Frederic</creatorcontrib><creatorcontrib>Cayco-Gajic, N. Alex</creatorcontrib><creatorcontrib>Gurnani, Harsha</creatorcontrib><creatorcontrib>Coyle, Diccon</creatorcontrib><creatorcontrib>Silver, R. Angus</creatorcontrib><title>Cerebellar granule cell axons support high-dimensional representations</title><title>Nature neuroscience</title><addtitle>Nat Neurosci</addtitle><addtitle>Nat Neurosci</addtitle><description>In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell ‘decoders’, we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures.
By recording from hundreds of cerebellar granule cell axons with three-dimensional two-photon calcium imaging, Lanore et al. show that population activity is high-dimensional and that quiet wakeful and active states are orthogonally arranged in neuronal activity space.</description><subject>631/378/2629</subject><subject>631/378/3920</subject><subject>Acousto-optics</subject><subject>Activity patterns</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Associative learning</subject><subject>Axons</subject><subject>Axons - physiology</subject><subject>Behavior, Animal - physiology</subject><subject>Behavioral Sciences</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain cells</subject><subject>Brain research</subject><subject>Calcium imaging</subject><subject>Cerebellum</subject><subject>Cerebellum - physiology</subject><subject>Cerebral cortex</subject><subject>Circuits</subject><subject>Cortex (somatosensory)</subject><subject>Decoders</subject><subject>Female</subject><subject>Granular materials</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Life Sciences</subject><subject>Locomotion - physiology</subject><subject>Male</subject><subject>Mental representation</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motor skill learning</subject><subject>Motor task performance</subject><subject>Neocortex</subject><subject>Neurobiology</subject><subject>Neuroimaging</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Perceptual-motor processes</subject><subject>Photons</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Psychological aspects</subject><subject>Representations</subject><subject>Subspaces</subject><issn>1097-6256</issn><issn>1546-1726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kktr3DAUhU1padK0f6CLYugmWTiVrKc3hWFoHjBQ6GMtZPnao2BLU8kO039fOc6jE0rRQtLVd46ky8my9xidY0Tkp0gxq0iBSlwgJAUp9i-yY8woL7Ao-cu0RpUoeMn4UfYmxhuEkGCyep0dEYq5JBQdZxdrCFBD3-uQd0G7qYfcpG2u997FPE67nQ9jvrXdtmjsAC5a73SfB9gFiOBGPaZCfJu9anUf4d39fJL9vPjyY31VbL5eXq9Xm8JwVI0FE4wSmZatNJwzjtpG0gYT3FaEICZro6kxvG4NqWlVU4NAE1QjwK0UAmlykn1efHdTPUBj0gOC7tUu2EGH38prqw5PnN2qzt8qwTGmvEwGZ4vB9pnsarVRcw0RwkVF5S1O7On9ZcH_miCOarBxbo524KeoSkYZq0pJq4R-fIbe-CmkRs0UE-lvmIonqtM9KOtan95oZlO14gJRSfmd1_k_qDQaGKzxDlqb6geCswNBYkbYj52eYlTX378dsuXCmuBjDNA-NgEjNadKLalSKVXqLlVqn0Qf_u76o-QhRgkgCxDTkesgPH3_P7Z_ABhJ1ik</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Lanore, Frederic</creator><creator>Cayco-Gajic, N. Alex</creator><creator>Gurnani, Harsha</creator><creator>Coyle, Diccon</creator><creator>Silver, R. Angus</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4316-6855</orcidid><orcidid>https://orcid.org/0000-0002-5480-6638</orcidid></search><sort><creationdate>20210801</creationdate><title>Cerebellar granule cell axons support high-dimensional representations</title><author>Lanore, Frederic ; Cayco-Gajic, N. Alex ; Gurnani, Harsha ; Coyle, Diccon ; Silver, R. Angus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-575438609f8c66560fd84d131f933058bca4cc6bfc3b49b4c0ea30b0e1f8770a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/378/2629</topic><topic>631/378/3920</topic><topic>Acousto-optics</topic><topic>Activity patterns</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Associative learning</topic><topic>Axons</topic><topic>Axons - physiology</topic><topic>Behavior, Animal - physiology</topic><topic>Behavioral Sciences</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain cells</topic><topic>Brain research</topic><topic>Calcium imaging</topic><topic>Cerebellum</topic><topic>Cerebellum - physiology</topic><topic>Cerebral cortex</topic><topic>Circuits</topic><topic>Cortex (somatosensory)</topic><topic>Decoders</topic><topic>Female</topic><topic>Granular materials</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Life Sciences</topic><topic>Locomotion - physiology</topic><topic>Male</topic><topic>Mental representation</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motor skill learning</topic><topic>Motor task performance</topic><topic>Neocortex</topic><topic>Neurobiology</topic><topic>Neuroimaging</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Perceptual-motor processes</topic><topic>Photons</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Psychological aspects</topic><topic>Representations</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lanore, Frederic</creatorcontrib><creatorcontrib>Cayco-Gajic, N. Alex</creatorcontrib><creatorcontrib>Gurnani, Harsha</creatorcontrib><creatorcontrib>Coyle, Diccon</creatorcontrib><creatorcontrib>Silver, R. Angus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lanore, Frederic</au><au>Cayco-Gajic, N. Alex</au><au>Gurnani, Harsha</au><au>Coyle, Diccon</au><au>Silver, R. Angus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cerebellar granule cell axons support high-dimensional representations</atitle><jtitle>Nature neuroscience</jtitle><stitle>Nat Neurosci</stitle><addtitle>Nat Neurosci</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>24</volume><issue>8</issue><spage>1142</spage><epage>1150</epage><pages>1142-1150</pages><issn>1097-6256</issn><eissn>1546-1726</eissn><abstract>In classical theories of cerebellar cortex, high-dimensional sensorimotor representations are used to separate neuronal activity patterns, improving associative learning and motor performance. Recent experimental studies suggest that cerebellar granule cell (GrC) population activity is low-dimensional. To examine sensorimotor representations from the point of view of downstream Purkinje cell ‘decoders’, we used three-dimensional acousto-optic lens two-photon microscopy to record from hundreds of GrC axons. Here we show that GrC axon population activity is high dimensional and distributed with little fine-scale spatial structure during spontaneous behaviors. Moreover, distinct behavioral states are represented along orthogonal dimensions in neuronal activity space. These results suggest that the cerebellar cortex supports high-dimensional representations and segregates behavioral state-dependent computations into orthogonal subspaces, as reported in the neocortex. Our findings match the predictions of cerebellar pattern separation theories and suggest that the cerebellum and neocortex use population codes with common features, despite their vastly different circuit structures.
By recording from hundreds of cerebellar granule cell axons with three-dimensional two-photon calcium imaging, Lanore et al. show that population activity is high-dimensional and that quiet wakeful and active states are orthogonally arranged in neuronal activity space.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>34168340</pmid><doi>10.1038/s41593-021-00873-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4316-6855</orcidid><orcidid>https://orcid.org/0000-0002-5480-6638</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-6256 |
ispartof | Nature neuroscience, 2021-08, Vol.24 (8), p.1142-1150 |
issn | 1097-6256 1546-1726 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7611462 |
source | MEDLINE; Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/378/2629 631/378/3920 Acousto-optics Activity patterns Animal Genetics and Genomics Animals Associative learning Axons Axons - physiology Behavior, Animal - physiology Behavioral Sciences Biological Techniques Biomedical and Life Sciences Biomedicine Brain cells Brain research Calcium imaging Cerebellum Cerebellum - physiology Cerebral cortex Circuits Cortex (somatosensory) Decoders Female Granular materials Imaging, Three-Dimensional - methods Life Sciences Locomotion - physiology Male Mental representation Mice Mice, Transgenic Motor skill learning Motor task performance Neocortex Neurobiology Neuroimaging Neurons and Cognition Neurosciences Perceptual-motor processes Photons Physiological aspects Population Psychological aspects Representations Subspaces |
title | Cerebellar granule cell axons support high-dimensional representations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T20%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cerebellar%20granule%20cell%20axons%20support%20high-dimensional%20representations&rft.jtitle=Nature%20neuroscience&rft.au=Lanore,%20Frederic&rft.date=2021-08-01&rft.volume=24&rft.issue=8&rft.spage=1142&rft.epage=1150&rft.pages=1142-1150&rft.issn=1097-6256&rft.eissn=1546-1726&rft_id=info:doi/10.1038/s41593-021-00873-x&rft_dat=%3Cgale_pubme%3EA670484649%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557305147&rft_id=info:pmid/34168340&rft_galeid=A670484649&rfr_iscdi=true |