MAIT cell activation augments adenovirus vector vaccine immunogenicity

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and hum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2021-01, Vol.371 (6528), p.521-526
Hauptverfasser: Provine, Nicholas M, Amini, Ali, Garner, Lucy C, Spencer, Alexandra J, Dold, Christina, Hutchings, Claire, Silva Reyes, Laura, FitzPatrick, Michael E B, Chinnakannan, Senthil, Oguti, Blanche, Raymond, Meriel, Ulaszewska, Marta, Troise, Fulvia, Sharpe, Hannah, Morgan, Sophie B, Hinks, Timothy S C, Lambe, Teresa, Capone, Stefania, Folgori, Antonella, Barnes, Eleanor, Rollier, Christine S, Pollard, Andrew J, Klenerman, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 526
container_issue 6528
container_start_page 521
container_title Science (American Association for the Advancement of Science)
container_volume 371
creator Provine, Nicholas M
Amini, Ali
Garner, Lucy C
Spencer, Alexandra J
Dold, Christina
Hutchings, Claire
Silva Reyes, Laura
FitzPatrick, Michael E B
Chinnakannan, Senthil
Oguti, Blanche
Raymond, Meriel
Ulaszewska, Marta
Troise, Fulvia
Sharpe, Hannah
Morgan, Sophie B
Hinks, Timothy S C
Lambe, Teresa
Capone, Stefania
Folgori, Antonella
Barnes, Eleanor
Rollier, Christine S
Pollard, Andrew J
Klenerman, Paul
description Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8 T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.
doi_str_mv 10.1126/science.aax8819
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2483816162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-51aa228e95ac6109f7db221b91140670ffbaf46a6d47a741de33affb2acd29583</originalsourceid><addsrcrecordid>eNpdkUtPAjEUhRujEUTX7swkbtwM9DWvjYkhoiQYN7huLp0OljAttjMT-fcWQaKubtL79dxzchC6JnhICE1HXmplpBoCfOY5KU5Qn-AiiQuK2SnqY8zSOMdZ0kMX3q8wDruCnaMeYwnBmBZ9NHl5mM4jqdbrCGSjO2i0NRG0y1qZxkdQKmM77VofdUo21kUdSKmNinRdt8YuldFSN9tLdFbB2qurwxygt8njfPwcz16fpuOHWSx5njVxQgAozVWRgEyD0yorF5SSRUEIx2mGq2oBFU8hLXkGGSelYgzCIwVZ0iLJ2QDd73U37aJWpQwmHazFxuka3FZY0OLvxuh3sbSdyHbnOAkCdwcBZz9a5RtRa7-LD0bZ1gvKc5aTlKQ0oLf_0JVtnQnxvinMkwzzQI32lHTWe6eqoxmCxa4jcehIHDoKP25-ZzjyP6WwLy7gkOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2483045704</pqid></control><display><type>article</type><title>MAIT cell activation augments adenovirus vector vaccine immunogenicity</title><source>American Association for the Advancement of Science</source><source>MEDLINE</source><creator>Provine, Nicholas M ; Amini, Ali ; Garner, Lucy C ; Spencer, Alexandra J ; Dold, Christina ; Hutchings, Claire ; Silva Reyes, Laura ; FitzPatrick, Michael E B ; Chinnakannan, Senthil ; Oguti, Blanche ; Raymond, Meriel ; Ulaszewska, Marta ; Troise, Fulvia ; Sharpe, Hannah ; Morgan, Sophie B ; Hinks, Timothy S C ; Lambe, Teresa ; Capone, Stefania ; Folgori, Antonella ; Barnes, Eleanor ; Rollier, Christine S ; Pollard, Andrew J ; Klenerman, Paul</creator><creatorcontrib>Provine, Nicholas M ; Amini, Ali ; Garner, Lucy C ; Spencer, Alexandra J ; Dold, Christina ; Hutchings, Claire ; Silva Reyes, Laura ; FitzPatrick, Michael E B ; Chinnakannan, Senthil ; Oguti, Blanche ; Raymond, Meriel ; Ulaszewska, Marta ; Troise, Fulvia ; Sharpe, Hannah ; Morgan, Sophie B ; Hinks, Timothy S C ; Lambe, Teresa ; Capone, Stefania ; Folgori, Antonella ; Barnes, Eleanor ; Rollier, Christine S ; Pollard, Andrew J ; Klenerman, Paul</creatorcontrib><description>Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8 T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aax8819</identifier><identifier>PMID: 33510029</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Adenoviridae - immunology ; Adenoviruses ; Animals ; Antigens ; CD8 antigen ; CD8-Positive T-Lymphocytes - immunology ; Cell activation ; Cytokines ; Dendritic cells ; Dendritic Cells - immunology ; Expression vectors ; Genetic Vectors - immunology ; Homeostasis ; Humans ; Immunization ; Immunogenicity ; Immunogenicity, Vaccine ; Interferon ; Interferon-alpha - metabolism ; Interleukin 18 ; Interleukin-18 - metabolism ; Invariants ; Lymphocyte Activation ; Lymphocytes ; Lymphocytes T ; Mice ; Mice, Inbred C57BL ; Microbiota ; Monocytes ; Mucosa ; Mucosal-Associated Invariant T Cells - immunology ; Tumor necrosis factor ; Tumor Necrosis Factor-alpha - metabolism ; Tumor necrosis factor-TNF ; Vaccines ; Viral Vaccines - immunology ; Viruses ; α-Interferon</subject><ispartof>Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6528), p.521-526</ispartof><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-51aa228e95ac6109f7db221b91140670ffbaf46a6d47a741de33affb2acd29583</citedby><cites>FETCH-LOGICAL-c487t-51aa228e95ac6109f7db221b91140670ffbaf46a6d47a741de33affb2acd29583</cites><orcidid>0000-0002-4815-1495 ; 0000-0003-4288-2892 ; 0000-0001-9087-9992 ; 0000-0003-4307-9161 ; 0000-0002-6461-252X ; 0000-0002-1194-2429 ; 0000-0001-7361-719X ; 0000-0002-0860-0831 ; 0000-0002-7858-6924 ; 0000-0002-3678-1836 ; 0000-0002-0442-9280 ; 0000-0001-7958-6961 ; 0000-0001-7711-897X ; 0000-0003-0699-2373 ; 0000-0002-2272-120X ; 0000-0002-9694-2216 ; 0000-0002-6837-8881 ; 0000-0001-8951-6633 ; 0000-0002-9712-8080</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2871,2872,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33510029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Provine, Nicholas M</creatorcontrib><creatorcontrib>Amini, Ali</creatorcontrib><creatorcontrib>Garner, Lucy C</creatorcontrib><creatorcontrib>Spencer, Alexandra J</creatorcontrib><creatorcontrib>Dold, Christina</creatorcontrib><creatorcontrib>Hutchings, Claire</creatorcontrib><creatorcontrib>Silva Reyes, Laura</creatorcontrib><creatorcontrib>FitzPatrick, Michael E B</creatorcontrib><creatorcontrib>Chinnakannan, Senthil</creatorcontrib><creatorcontrib>Oguti, Blanche</creatorcontrib><creatorcontrib>Raymond, Meriel</creatorcontrib><creatorcontrib>Ulaszewska, Marta</creatorcontrib><creatorcontrib>Troise, Fulvia</creatorcontrib><creatorcontrib>Sharpe, Hannah</creatorcontrib><creatorcontrib>Morgan, Sophie B</creatorcontrib><creatorcontrib>Hinks, Timothy S C</creatorcontrib><creatorcontrib>Lambe, Teresa</creatorcontrib><creatorcontrib>Capone, Stefania</creatorcontrib><creatorcontrib>Folgori, Antonella</creatorcontrib><creatorcontrib>Barnes, Eleanor</creatorcontrib><creatorcontrib>Rollier, Christine S</creatorcontrib><creatorcontrib>Pollard, Andrew J</creatorcontrib><creatorcontrib>Klenerman, Paul</creatorcontrib><title>MAIT cell activation augments adenovirus vector vaccine immunogenicity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8 T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.</description><subject>Adenoviridae - immunology</subject><subject>Adenoviruses</subject><subject>Animals</subject><subject>Antigens</subject><subject>CD8 antigen</subject><subject>CD8-Positive T-Lymphocytes - immunology</subject><subject>Cell activation</subject><subject>Cytokines</subject><subject>Dendritic cells</subject><subject>Dendritic Cells - immunology</subject><subject>Expression vectors</subject><subject>Genetic Vectors - immunology</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immunization</subject><subject>Immunogenicity</subject><subject>Immunogenicity, Vaccine</subject><subject>Interferon</subject><subject>Interferon-alpha - metabolism</subject><subject>Interleukin 18</subject><subject>Interleukin-18 - metabolism</subject><subject>Invariants</subject><subject>Lymphocyte Activation</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiota</subject><subject>Monocytes</subject><subject>Mucosa</subject><subject>Mucosal-Associated Invariant T Cells - immunology</subject><subject>Tumor necrosis factor</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Tumor necrosis factor-TNF</subject><subject>Vaccines</subject><subject>Viral Vaccines - immunology</subject><subject>Viruses</subject><subject>α-Interferon</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtPAjEUhRujEUTX7swkbtwM9DWvjYkhoiQYN7huLp0OljAttjMT-fcWQaKubtL79dxzchC6JnhICE1HXmplpBoCfOY5KU5Qn-AiiQuK2SnqY8zSOMdZ0kMX3q8wDruCnaMeYwnBmBZ9NHl5mM4jqdbrCGSjO2i0NRG0y1qZxkdQKmM77VofdUo21kUdSKmNinRdt8YuldFSN9tLdFbB2qurwxygt8njfPwcz16fpuOHWSx5njVxQgAozVWRgEyD0yorF5SSRUEIx2mGq2oBFU8hLXkGGSelYgzCIwVZ0iLJ2QDd73U37aJWpQwmHazFxuka3FZY0OLvxuh3sbSdyHbnOAkCdwcBZz9a5RtRa7-LD0bZ1gvKc5aTlKQ0oLf_0JVtnQnxvinMkwzzQI32lHTWe6eqoxmCxa4jcehIHDoKP25-ZzjyP6WwLy7gkOw</recordid><startdate>20210129</startdate><enddate>20210129</enddate><creator>Provine, Nicholas M</creator><creator>Amini, Ali</creator><creator>Garner, Lucy C</creator><creator>Spencer, Alexandra J</creator><creator>Dold, Christina</creator><creator>Hutchings, Claire</creator><creator>Silva Reyes, Laura</creator><creator>FitzPatrick, Michael E B</creator><creator>Chinnakannan, Senthil</creator><creator>Oguti, Blanche</creator><creator>Raymond, Meriel</creator><creator>Ulaszewska, Marta</creator><creator>Troise, Fulvia</creator><creator>Sharpe, Hannah</creator><creator>Morgan, Sophie B</creator><creator>Hinks, Timothy S C</creator><creator>Lambe, Teresa</creator><creator>Capone, Stefania</creator><creator>Folgori, Antonella</creator><creator>Barnes, Eleanor</creator><creator>Rollier, Christine S</creator><creator>Pollard, Andrew J</creator><creator>Klenerman, Paul</creator><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4815-1495</orcidid><orcidid>https://orcid.org/0000-0003-4288-2892</orcidid><orcidid>https://orcid.org/0000-0001-9087-9992</orcidid><orcidid>https://orcid.org/0000-0003-4307-9161</orcidid><orcidid>https://orcid.org/0000-0002-6461-252X</orcidid><orcidid>https://orcid.org/0000-0002-1194-2429</orcidid><orcidid>https://orcid.org/0000-0001-7361-719X</orcidid><orcidid>https://orcid.org/0000-0002-0860-0831</orcidid><orcidid>https://orcid.org/0000-0002-7858-6924</orcidid><orcidid>https://orcid.org/0000-0002-3678-1836</orcidid><orcidid>https://orcid.org/0000-0002-0442-9280</orcidid><orcidid>https://orcid.org/0000-0001-7958-6961</orcidid><orcidid>https://orcid.org/0000-0001-7711-897X</orcidid><orcidid>https://orcid.org/0000-0003-0699-2373</orcidid><orcidid>https://orcid.org/0000-0002-2272-120X</orcidid><orcidid>https://orcid.org/0000-0002-9694-2216</orcidid><orcidid>https://orcid.org/0000-0002-6837-8881</orcidid><orcidid>https://orcid.org/0000-0001-8951-6633</orcidid><orcidid>https://orcid.org/0000-0002-9712-8080</orcidid></search><sort><creationdate>20210129</creationdate><title>MAIT cell activation augments adenovirus vector vaccine immunogenicity</title><author>Provine, Nicholas M ; Amini, Ali ; Garner, Lucy C ; Spencer, Alexandra J ; Dold, Christina ; Hutchings, Claire ; Silva Reyes, Laura ; FitzPatrick, Michael E B ; Chinnakannan, Senthil ; Oguti, Blanche ; Raymond, Meriel ; Ulaszewska, Marta ; Troise, Fulvia ; Sharpe, Hannah ; Morgan, Sophie B ; Hinks, Timothy S C ; Lambe, Teresa ; Capone, Stefania ; Folgori, Antonella ; Barnes, Eleanor ; Rollier, Christine S ; Pollard, Andrew J ; Klenerman, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-51aa228e95ac6109f7db221b91140670ffbaf46a6d47a741de33affb2acd29583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenoviridae - immunology</topic><topic>Adenoviruses</topic><topic>Animals</topic><topic>Antigens</topic><topic>CD8 antigen</topic><topic>CD8-Positive T-Lymphocytes - immunology</topic><topic>Cell activation</topic><topic>Cytokines</topic><topic>Dendritic cells</topic><topic>Dendritic Cells - immunology</topic><topic>Expression vectors</topic><topic>Genetic Vectors - immunology</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immunization</topic><topic>Immunogenicity</topic><topic>Immunogenicity, Vaccine</topic><topic>Interferon</topic><topic>Interferon-alpha - metabolism</topic><topic>Interleukin 18</topic><topic>Interleukin-18 - metabolism</topic><topic>Invariants</topic><topic>Lymphocyte Activation</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiota</topic><topic>Monocytes</topic><topic>Mucosa</topic><topic>Mucosal-Associated Invariant T Cells - immunology</topic><topic>Tumor necrosis factor</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Tumor necrosis factor-TNF</topic><topic>Vaccines</topic><topic>Viral Vaccines - immunology</topic><topic>Viruses</topic><topic>α-Interferon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Provine, Nicholas M</creatorcontrib><creatorcontrib>Amini, Ali</creatorcontrib><creatorcontrib>Garner, Lucy C</creatorcontrib><creatorcontrib>Spencer, Alexandra J</creatorcontrib><creatorcontrib>Dold, Christina</creatorcontrib><creatorcontrib>Hutchings, Claire</creatorcontrib><creatorcontrib>Silva Reyes, Laura</creatorcontrib><creatorcontrib>FitzPatrick, Michael E B</creatorcontrib><creatorcontrib>Chinnakannan, Senthil</creatorcontrib><creatorcontrib>Oguti, Blanche</creatorcontrib><creatorcontrib>Raymond, Meriel</creatorcontrib><creatorcontrib>Ulaszewska, Marta</creatorcontrib><creatorcontrib>Troise, Fulvia</creatorcontrib><creatorcontrib>Sharpe, Hannah</creatorcontrib><creatorcontrib>Morgan, Sophie B</creatorcontrib><creatorcontrib>Hinks, Timothy S C</creatorcontrib><creatorcontrib>Lambe, Teresa</creatorcontrib><creatorcontrib>Capone, Stefania</creatorcontrib><creatorcontrib>Folgori, Antonella</creatorcontrib><creatorcontrib>Barnes, Eleanor</creatorcontrib><creatorcontrib>Rollier, Christine S</creatorcontrib><creatorcontrib>Pollard, Andrew J</creatorcontrib><creatorcontrib>Klenerman, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Provine, Nicholas M</au><au>Amini, Ali</au><au>Garner, Lucy C</au><au>Spencer, Alexandra J</au><au>Dold, Christina</au><au>Hutchings, Claire</au><au>Silva Reyes, Laura</au><au>FitzPatrick, Michael E B</au><au>Chinnakannan, Senthil</au><au>Oguti, Blanche</au><au>Raymond, Meriel</au><au>Ulaszewska, Marta</au><au>Troise, Fulvia</au><au>Sharpe, Hannah</au><au>Morgan, Sophie B</au><au>Hinks, Timothy S C</au><au>Lambe, Teresa</au><au>Capone, Stefania</au><au>Folgori, Antonella</au><au>Barnes, Eleanor</au><au>Rollier, Christine S</au><au>Pollard, Andrew J</au><au>Klenerman, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAIT cell activation augments adenovirus vector vaccine immunogenicity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2021-01-29</date><risdate>2021</risdate><volume>371</volume><issue>6528</issue><spage>521</spage><epage>526</epage><pages>521-526</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8 T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>33510029</pmid><doi>10.1126/science.aax8819</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4815-1495</orcidid><orcidid>https://orcid.org/0000-0003-4288-2892</orcidid><orcidid>https://orcid.org/0000-0001-9087-9992</orcidid><orcidid>https://orcid.org/0000-0003-4307-9161</orcidid><orcidid>https://orcid.org/0000-0002-6461-252X</orcidid><orcidid>https://orcid.org/0000-0002-1194-2429</orcidid><orcidid>https://orcid.org/0000-0001-7361-719X</orcidid><orcidid>https://orcid.org/0000-0002-0860-0831</orcidid><orcidid>https://orcid.org/0000-0002-7858-6924</orcidid><orcidid>https://orcid.org/0000-0002-3678-1836</orcidid><orcidid>https://orcid.org/0000-0002-0442-9280</orcidid><orcidid>https://orcid.org/0000-0001-7958-6961</orcidid><orcidid>https://orcid.org/0000-0001-7711-897X</orcidid><orcidid>https://orcid.org/0000-0003-0699-2373</orcidid><orcidid>https://orcid.org/0000-0002-2272-120X</orcidid><orcidid>https://orcid.org/0000-0002-9694-2216</orcidid><orcidid>https://orcid.org/0000-0002-6837-8881</orcidid><orcidid>https://orcid.org/0000-0001-8951-6633</orcidid><orcidid>https://orcid.org/0000-0002-9712-8080</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2021-01, Vol.371 (6528), p.521-526
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610941
source American Association for the Advancement of Science; MEDLINE
subjects Adenoviridae - immunology
Adenoviruses
Animals
Antigens
CD8 antigen
CD8-Positive T-Lymphocytes - immunology
Cell activation
Cytokines
Dendritic cells
Dendritic Cells - immunology
Expression vectors
Genetic Vectors - immunology
Homeostasis
Humans
Immunization
Immunogenicity
Immunogenicity, Vaccine
Interferon
Interferon-alpha - metabolism
Interleukin 18
Interleukin-18 - metabolism
Invariants
Lymphocyte Activation
Lymphocytes
Lymphocytes T
Mice
Mice, Inbred C57BL
Microbiota
Monocytes
Mucosa
Mucosal-Associated Invariant T Cells - immunology
Tumor necrosis factor
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-TNF
Vaccines
Viral Vaccines - immunology
Viruses
α-Interferon
title MAIT cell activation augments adenovirus vector vaccine immunogenicity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A16%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAIT%20cell%20activation%20augments%20adenovirus%20vector%20vaccine%20immunogenicity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Provine,%20Nicholas%20M&rft.date=2021-01-29&rft.volume=371&rft.issue=6528&rft.spage=521&rft.epage=526&rft.pages=521-526&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aax8819&rft_dat=%3Cproquest_pubme%3E2483816162%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2483045704&rft_id=info:pmid/33510029&rfr_iscdi=true