High‐Aspect‐Ratio Nanostructured Surfaces as Biological Metamaterials

Materials patterned with high‐aspect‐ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2020-03, Vol.32 (9), p.e1903862-n/a
Hauptverfasser: Higgins, Stuart G., Becce, Michele, Belessiotis‐Richards, Alexis, Seong, Hyejeong, Sero, Julia E., Stevens, Molly M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page e1903862
container_title Advanced materials (Weinheim)
container_volume 32
creator Higgins, Stuart G.
Becce, Michele
Belessiotis‐Richards, Alexis
Seong, Hyejeong
Sero, Julia E.
Stevens, Molly M.
description Materials patterned with high‐aspect‐ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high‐aspect‐ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell–nanostructure interface. This review considers how high‐aspect‐ratio nanostructured surfaces are used to both stimulate and sense biological systems. High‐aspect‐ratio nanostructured surfaces trigger a wide range of biological responses and can be thought to act as biological metamaterials. Their nanoscale structuring is comparable with that of intracellular machinery, interacting directly with the cell membrane and cytoskeleton. They are used for molecular delivery, intracellular sensing, and as biomechanical cues. Different applications and open research questions are summarized.
doi_str_mv 10.1002/adma.201903862
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339788917</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5342-a2362b7324bd0ec77fe55c63602fbcc2e236ccc263f4963d2892abf3864ef9363</originalsourceid><addsrcrecordid>eNqFkUtP3DAUha2qFQyUbZdVpG66yXD9iBNvKk2hPCSgUh9ry3FuBqMkHuyEih0_gd_YX1KPhk4fG1bnSve7R_foEPKGwpwCsEPT9GbOgCrglWQvyIwWjOYCVPGSzEDxIldSVLtkL8YbAFAS5A7Z5VQJITjMyPmZW17_fHhcxBXaMQ1fzOh8dmUGH8cw2XEK2GRfp9AaizEzMfvofOeXzpouu8TR9GbE4EwXX5NXbRI8eNJ98v3k07ejs_zi8-n50eIitwUXLDeMS1aXnIm6AbRl2WJRWMklsLa2lmHa26SSt0JJ3rBKMVO3KZ3AVnHJ98mHje9qqntsLA5jMJ1eBdebcK-9cfrfzeCu9dLf6VJSqIRKBu-fDIK_nTCOunfRYteZAf0UNeNclVWlaJnQd_-hN34KQ4qXKKlKUUG5puYbygYfY8B2-wwFvW5Jr1vS25bSwdu_I2zx37UkQG2AH67D-2fs9OL4cvHH_BeU8KD_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2369748077</pqid></control><display><type>article</type><title>High‐Aspect‐Ratio Nanostructured Surfaces as Biological Metamaterials</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Higgins, Stuart G. ; Becce, Michele ; Belessiotis‐Richards, Alexis ; Seong, Hyejeong ; Sero, Julia E. ; Stevens, Molly M.</creator><creatorcontrib>Higgins, Stuart G. ; Becce, Michele ; Belessiotis‐Richards, Alexis ; Seong, Hyejeong ; Sero, Julia E. ; Stevens, Molly M.</creatorcontrib><description>Materials patterned with high‐aspect‐ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high‐aspect‐ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell–nanostructure interface. This review considers how high‐aspect‐ratio nanostructured surfaces are used to both stimulate and sense biological systems. High‐aspect‐ratio nanostructured surfaces trigger a wide range of biological responses and can be thought to act as biological metamaterials. Their nanoscale structuring is comparable with that of intracellular machinery, interacting directly with the cell membrane and cytoskeleton. They are used for molecular delivery, intracellular sensing, and as biomechanical cues. Different applications and open research questions are summarized.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201903862</identifier><identifier>PMID: 31944430</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biocompatible Materials - chemistry ; biological metamaterials ; Biomechanical Phenomena ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Cell Adhesion ; Cell Differentiation ; Cell Membrane Permeability ; Electrochemical Techniques ; Eukaryotic Cells - ultrastructure ; high‐aspect‐ratio nanostructures ; Humans ; Materials science ; Metals - chemistry ; Metamaterials ; nanoneedles ; nanopillars ; Nanostructure ; Nanostructures - chemistry ; nanowires ; Photochemical Processes ; Polymers - chemistry ; Porosity ; Silicon - chemistry ; Surface Properties</subject><ispartof>Advanced materials (Weinheim), 2020-03, Vol.32 (9), p.e1903862-n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5342-a2362b7324bd0ec77fe55c63602fbcc2e236ccc263f4963d2892abf3864ef9363</citedby><cites>FETCH-LOGICAL-c5342-a2362b7324bd0ec77fe55c63602fbcc2e236ccc263f4963d2892abf3864ef9363</cites><orcidid>0000-0002-0299-9212 ; 0000-0002-4653-5364 ; 0000-0001-6838-5961 ; 0000-0002-8800-6954 ; 0000-0002-6688-5126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201903862$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201903862$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31944430$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Higgins, Stuart G.</creatorcontrib><creatorcontrib>Becce, Michele</creatorcontrib><creatorcontrib>Belessiotis‐Richards, Alexis</creatorcontrib><creatorcontrib>Seong, Hyejeong</creatorcontrib><creatorcontrib>Sero, Julia E.</creatorcontrib><creatorcontrib>Stevens, Molly M.</creatorcontrib><title>High‐Aspect‐Ratio Nanostructured Surfaces as Biological Metamaterials</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Materials patterned with high‐aspect‐ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high‐aspect‐ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell–nanostructure interface. This review considers how high‐aspect‐ratio nanostructured surfaces are used to both stimulate and sense biological systems. High‐aspect‐ratio nanostructured surfaces trigger a wide range of biological responses and can be thought to act as biological metamaterials. Their nanoscale structuring is comparable with that of intracellular machinery, interacting directly with the cell membrane and cytoskeleton. They are used for molecular delivery, intracellular sensing, and as biomechanical cues. Different applications and open research questions are summarized.</description><subject>Animals</subject><subject>Biocompatible Materials - chemistry</subject><subject>biological metamaterials</subject><subject>Biomechanical Phenomena</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Cell Adhesion</subject><subject>Cell Differentiation</subject><subject>Cell Membrane Permeability</subject><subject>Electrochemical Techniques</subject><subject>Eukaryotic Cells - ultrastructure</subject><subject>high‐aspect‐ratio nanostructures</subject><subject>Humans</subject><subject>Materials science</subject><subject>Metals - chemistry</subject><subject>Metamaterials</subject><subject>nanoneedles</subject><subject>nanopillars</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>nanowires</subject><subject>Photochemical Processes</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>Silicon - chemistry</subject><subject>Surface Properties</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtP3DAUha2qFQyUbZdVpG66yXD9iBNvKk2hPCSgUh9ry3FuBqMkHuyEih0_gd_YX1KPhk4fG1bnSve7R_foEPKGwpwCsEPT9GbOgCrglWQvyIwWjOYCVPGSzEDxIldSVLtkL8YbAFAS5A7Z5VQJITjMyPmZW17_fHhcxBXaMQ1fzOh8dmUGH8cw2XEK2GRfp9AaizEzMfvofOeXzpouu8TR9GbE4EwXX5NXbRI8eNJ98v3k07ejs_zi8-n50eIitwUXLDeMS1aXnIm6AbRl2WJRWMklsLa2lmHa26SSt0JJ3rBKMVO3KZ3AVnHJ98mHje9qqntsLA5jMJ1eBdebcK-9cfrfzeCu9dLf6VJSqIRKBu-fDIK_nTCOunfRYteZAf0UNeNclVWlaJnQd_-hN34KQ4qXKKlKUUG5puYbygYfY8B2-wwFvW5Jr1vS25bSwdu_I2zx37UkQG2AH67D-2fs9OL4cvHH_BeU8KD_</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Higgins, Stuart G.</creator><creator>Becce, Michele</creator><creator>Belessiotis‐Richards, Alexis</creator><creator>Seong, Hyejeong</creator><creator>Sero, Julia E.</creator><creator>Stevens, Molly M.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0299-9212</orcidid><orcidid>https://orcid.org/0000-0002-4653-5364</orcidid><orcidid>https://orcid.org/0000-0001-6838-5961</orcidid><orcidid>https://orcid.org/0000-0002-8800-6954</orcidid><orcidid>https://orcid.org/0000-0002-6688-5126</orcidid></search><sort><creationdate>20200301</creationdate><title>High‐Aspect‐Ratio Nanostructured Surfaces as Biological Metamaterials</title><author>Higgins, Stuart G. ; Becce, Michele ; Belessiotis‐Richards, Alexis ; Seong, Hyejeong ; Sero, Julia E. ; Stevens, Molly M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5342-a2362b7324bd0ec77fe55c63602fbcc2e236ccc263f4963d2892abf3864ef9363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biocompatible Materials - chemistry</topic><topic>biological metamaterials</topic><topic>Biomechanical Phenomena</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Cell Adhesion</topic><topic>Cell Differentiation</topic><topic>Cell Membrane Permeability</topic><topic>Electrochemical Techniques</topic><topic>Eukaryotic Cells - ultrastructure</topic><topic>high‐aspect‐ratio nanostructures</topic><topic>Humans</topic><topic>Materials science</topic><topic>Metals - chemistry</topic><topic>Metamaterials</topic><topic>nanoneedles</topic><topic>nanopillars</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>nanowires</topic><topic>Photochemical Processes</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>Silicon - chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higgins, Stuart G.</creatorcontrib><creatorcontrib>Becce, Michele</creatorcontrib><creatorcontrib>Belessiotis‐Richards, Alexis</creatorcontrib><creatorcontrib>Seong, Hyejeong</creatorcontrib><creatorcontrib>Sero, Julia E.</creatorcontrib><creatorcontrib>Stevens, Molly M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higgins, Stuart G.</au><au>Becce, Michele</au><au>Belessiotis‐Richards, Alexis</au><au>Seong, Hyejeong</au><au>Sero, Julia E.</au><au>Stevens, Molly M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐Aspect‐Ratio Nanostructured Surfaces as Biological Metamaterials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><spage>e1903862</spage><epage>n/a</epage><pages>e1903862-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Materials patterned with high‐aspect‐ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high‐aspect‐ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell–nanostructure interface. This review considers how high‐aspect‐ratio nanostructured surfaces are used to both stimulate and sense biological systems. High‐aspect‐ratio nanostructured surfaces trigger a wide range of biological responses and can be thought to act as biological metamaterials. Their nanoscale structuring is comparable with that of intracellular machinery, interacting directly with the cell membrane and cytoskeleton. They are used for molecular delivery, intracellular sensing, and as biomechanical cues. Different applications and open research questions are summarized.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31944430</pmid><doi>10.1002/adma.201903862</doi><tpages>44</tpages><orcidid>https://orcid.org/0000-0002-0299-9212</orcidid><orcidid>https://orcid.org/0000-0002-4653-5364</orcidid><orcidid>https://orcid.org/0000-0001-6838-5961</orcidid><orcidid>https://orcid.org/0000-0002-8800-6954</orcidid><orcidid>https://orcid.org/0000-0002-6688-5126</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2020-03, Vol.32 (9), p.e1903862-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610849
source MEDLINE; Access via Wiley Online Library
subjects Animals
Biocompatible Materials - chemistry
biological metamaterials
Biomechanical Phenomena
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Cell Adhesion
Cell Differentiation
Cell Membrane Permeability
Electrochemical Techniques
Eukaryotic Cells - ultrastructure
high‐aspect‐ratio nanostructures
Humans
Materials science
Metals - chemistry
Metamaterials
nanoneedles
nanopillars
Nanostructure
Nanostructures - chemistry
nanowires
Photochemical Processes
Polymers - chemistry
Porosity
Silicon - chemistry
Surface Properties
title High‐Aspect‐Ratio Nanostructured Surfaces as Biological Metamaterials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90Aspect%E2%80%90Ratio%20Nanostructured%20Surfaces%20as%20Biological%20Metamaterials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Higgins,%20Stuart%20G.&rft.date=2020-03-01&rft.volume=32&rft.issue=9&rft.spage=e1903862&rft.epage=n/a&rft.pages=e1903862-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201903862&rft_dat=%3Cproquest_pubme%3E2339788917%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2369748077&rft_id=info:pmid/31944430&rfr_iscdi=true