HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis

Meiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination path...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2021-04, Vol.7 (4), p.452-467
Hauptverfasser: Nageswaran, Divyashree C., Kim, Jaeil, Lambing, Christophe, Kim, Juhyun, Park, Jihye, Kim, Eun-Jung, Cho, Hyun Seob, Kim, Heejin, Byun, Dohwan, Park, Yeong Mi, Kuo, Pallas, Lee, Seungchul, Tock, Andrew J., Zhao, Xiaohui, Hwang, Ildoo, Choi, Kyuha, Henderson, Ian R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 467
container_issue 4
container_start_page 452
container_title Nature plants
container_volume 7
creator Nageswaran, Divyashree C.
Kim, Jaeil
Lambing, Christophe
Kim, Juhyun
Park, Jihye
Kim, Eun-Jung
Cho, Hyun Seob
Kim, Heejin
Byun, Dohwan
Park, Yeong Mi
Kuo, Pallas
Lee, Seungchul
Tock, Andrew J.
Zhao, Xiaohui
Hwang, Ildoo
Choi, Kyuha
Henderson, Ian R.
description Meiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination pathways; however, similar pathways repressing class I crossovers have not been identified. Here, we performed a forward genetic screen in Arabidopsis using fluorescent crossover reporters to identify mutants with increased or decreased recombination frequency. We identified HIGH CROSSOVER RATE1 ( HCR1 ) as repressing crossovers and encoding PROTEIN PHOSPHATASE X1. Genome-wide analysis showed that hcr1 crossovers are increased in the distal chromosome arms. MLH1 foci significantly increase in hcr1 and crossover interference decreases, demonstrating an effect on class I repair. Consistently, yeast two-hybrid and in planta assays show interaction between HCR1 and class I proteins, including HEI10, PTD, MSH5 and MLH1. We propose that HCR1 plays a major role in opposition to pro-recombination kinases to restrict crossovers in Arabidopsis . HIGH CROSSOVER RATE1 ( HCR1 ) represses meiotic crossovers and encodes PROTEIN PHOSPHATASE X1, which therefore has a major role opposing the function of pro-recombination kinases to restrict crossovers in Arabidopsis .
doi_str_mv 10.1038/s41477-021-00889-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2512333226</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-28ecc18a783a029be84b1964887eeba9dbef6b67cbd4dd13ef3c6f4449a29ba33</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EolXbL8ABWeLCJeB_iZ0LUrRKm5UqstpdEDfLcSbF1W682NlK--1xu6UtHDjZ8vzmjd88hN5R8okSrj5HQYWUGWE0I0SpMju8QqeM5Hl6kur1i_sJuojxlhBCZZ7zgrxFJ5wrUeQlP0W2mV81eLZsV6v2e73Ey2pdUwyj9T1EvFi263r-FS-adrVoqnW1qvEPis3Y4wBxCs5OEW_B-clZbIOP0d9BiNiNuAqmc73fRRfP0ZvBbCJcPJ5n6NtlvZ412XV7NZ9V15kVUkwZU2AtVUYqbggrO1Cio2UhlJIAnSn7DoaiK6TtetH3lMPAbTEIIUqTaMP5Gfpy1N3tuy30FsYpmI3eBbc14aC9cfrvyuh-6ht_p2VBSZGLJPDxUSD4X_tkUG9dtLDZmBH8PmqWU8Y5Z6xI6Id_0Fu_D2Oyd08JJdO-WaLYkXrYTYDh6TOU6PsY9TFGnWLUDzHqQ2p6_9LGU8uf0BLAj0BMpfEGwvPs_8j-Bveip0Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2514870002</pqid></control><display><type>article</type><title>HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Nageswaran, Divyashree C. ; Kim, Jaeil ; Lambing, Christophe ; Kim, Juhyun ; Park, Jihye ; Kim, Eun-Jung ; Cho, Hyun Seob ; Kim, Heejin ; Byun, Dohwan ; Park, Yeong Mi ; Kuo, Pallas ; Lee, Seungchul ; Tock, Andrew J. ; Zhao, Xiaohui ; Hwang, Ildoo ; Choi, Kyuha ; Henderson, Ian R.</creator><creatorcontrib>Nageswaran, Divyashree C. ; Kim, Jaeil ; Lambing, Christophe ; Kim, Juhyun ; Park, Jihye ; Kim, Eun-Jung ; Cho, Hyun Seob ; Kim, Heejin ; Byun, Dohwan ; Park, Yeong Mi ; Kuo, Pallas ; Lee, Seungchul ; Tock, Andrew J. ; Zhao, Xiaohui ; Hwang, Ildoo ; Choi, Kyuha ; Henderson, Ian R.</creatorcontrib><description>Meiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination pathways; however, similar pathways repressing class I crossovers have not been identified. Here, we performed a forward genetic screen in Arabidopsis using fluorescent crossover reporters to identify mutants with increased or decreased recombination frequency. We identified HIGH CROSSOVER RATE1 ( HCR1 ) as repressing crossovers and encoding PROTEIN PHOSPHATASE X1. Genome-wide analysis showed that hcr1 crossovers are increased in the distal chromosome arms. MLH1 foci significantly increase in hcr1 and crossover interference decreases, demonstrating an effect on class I repair. Consistently, yeast two-hybrid and in planta assays show interaction between HCR1 and class I proteins, including HEI10, PTD, MSH5 and MLH1. We propose that HCR1 plays a major role in opposition to pro-recombination kinases to restrict crossovers in Arabidopsis . HIGH CROSSOVER RATE1 ( HCR1 ) represses meiotic crossovers and encodes PROTEIN PHOSPHATASE X1, which therefore has a major role opposing the function of pro-recombination kinases to restrict crossovers in Arabidopsis .</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-021-00889-y</identifier><identifier>PMID: 33846593</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>14 ; 14/35 ; 42 ; 42/47 ; 45 ; 45/22 ; 45/23 ; 631/449/1659 ; 631/449/2491 ; Amino Acid Sequence ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Biomedical and Life Sciences ; Chromosomes ; Crossing Over, Genetic ; Crossovers ; Deoxyribonucleic acid ; DNA ; DNA damage ; Eukaryotes ; Fluorescence ; Genetic screening ; Genomes ; Kinases ; Life Sciences ; Meiosis ; MLH1 protein ; Phosphatase ; Plant Sciences ; Protein phosphatase ; Proteins ; Recombination ; Repair ; Sequence Alignment ; Yeasts</subject><ispartof>Nature plants, 2021-04, Vol.7 (4), p.452-467</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-28ecc18a783a029be84b1964887eeba9dbef6b67cbd4dd13ef3c6f4449a29ba33</citedby><cites>FETCH-LOGICAL-c474t-28ecc18a783a029be84b1964887eeba9dbef6b67cbd4dd13ef3c6f4449a29ba33</cites><orcidid>0000-0001-5435-2026 ; 0000-0002-9454-3326 ; 0000-0002-1980-2252 ; 0000-0002-4072-3807 ; 0000-0001-5066-1489 ; 0000-0002-6590-8314 ; 0000-0001-9922-2815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-021-00889-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-021-00889-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33846593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nageswaran, Divyashree C.</creatorcontrib><creatorcontrib>Kim, Jaeil</creatorcontrib><creatorcontrib>Lambing, Christophe</creatorcontrib><creatorcontrib>Kim, Juhyun</creatorcontrib><creatorcontrib>Park, Jihye</creatorcontrib><creatorcontrib>Kim, Eun-Jung</creatorcontrib><creatorcontrib>Cho, Hyun Seob</creatorcontrib><creatorcontrib>Kim, Heejin</creatorcontrib><creatorcontrib>Byun, Dohwan</creatorcontrib><creatorcontrib>Park, Yeong Mi</creatorcontrib><creatorcontrib>Kuo, Pallas</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><creatorcontrib>Tock, Andrew J.</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Hwang, Ildoo</creatorcontrib><creatorcontrib>Choi, Kyuha</creatorcontrib><creatorcontrib>Henderson, Ian R.</creatorcontrib><title>HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>Meiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination pathways; however, similar pathways repressing class I crossovers have not been identified. Here, we performed a forward genetic screen in Arabidopsis using fluorescent crossover reporters to identify mutants with increased or decreased recombination frequency. We identified HIGH CROSSOVER RATE1 ( HCR1 ) as repressing crossovers and encoding PROTEIN PHOSPHATASE X1. Genome-wide analysis showed that hcr1 crossovers are increased in the distal chromosome arms. MLH1 foci significantly increase in hcr1 and crossover interference decreases, demonstrating an effect on class I repair. Consistently, yeast two-hybrid and in planta assays show interaction between HCR1 and class I proteins, including HEI10, PTD, MSH5 and MLH1. We propose that HCR1 plays a major role in opposition to pro-recombination kinases to restrict crossovers in Arabidopsis . HIGH CROSSOVER RATE1 ( HCR1 ) represses meiotic crossovers and encodes PROTEIN PHOSPHATASE X1, which therefore has a major role opposing the function of pro-recombination kinases to restrict crossovers in Arabidopsis .</description><subject>14</subject><subject>14/35</subject><subject>42</subject><subject>42/47</subject><subject>45</subject><subject>45/22</subject><subject>45/23</subject><subject>631/449/1659</subject><subject>631/449/2491</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Biomedical and Life Sciences</subject><subject>Chromosomes</subject><subject>Crossing Over, Genetic</subject><subject>Crossovers</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>Eukaryotes</subject><subject>Fluorescence</subject><subject>Genetic screening</subject><subject>Genomes</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Meiosis</subject><subject>MLH1 protein</subject><subject>Phosphatase</subject><subject>Plant Sciences</subject><subject>Protein phosphatase</subject><subject>Proteins</subject><subject>Recombination</subject><subject>Repair</subject><subject>Sequence Alignment</subject><subject>Yeasts</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU9v1DAQxS0EolXbL8ABWeLCJeB_iZ0LUrRKm5UqstpdEDfLcSbF1W682NlK--1xu6UtHDjZ8vzmjd88hN5R8okSrj5HQYWUGWE0I0SpMju8QqeM5Hl6kur1i_sJuojxlhBCZZ7zgrxFJ5wrUeQlP0W2mV81eLZsV6v2e73Ey2pdUwyj9T1EvFi263r-FS-adrVoqnW1qvEPis3Y4wBxCs5OEW_B-clZbIOP0d9BiNiNuAqmc73fRRfP0ZvBbCJcPJ5n6NtlvZ412XV7NZ9V15kVUkwZU2AtVUYqbggrO1Cio2UhlJIAnSn7DoaiK6TtetH3lMPAbTEIIUqTaMP5Gfpy1N3tuy30FsYpmI3eBbc14aC9cfrvyuh-6ht_p2VBSZGLJPDxUSD4X_tkUG9dtLDZmBH8PmqWU8Y5Z6xI6Id_0Fu_D2Oyd08JJdO-WaLYkXrYTYDh6TOU6PsY9TFGnWLUDzHqQ2p6_9LGU8uf0BLAj0BMpfEGwvPs_8j-Bveip0Y</recordid><startdate>20210401</startdate><enddate>20210401</enddate><creator>Nageswaran, Divyashree C.</creator><creator>Kim, Jaeil</creator><creator>Lambing, Christophe</creator><creator>Kim, Juhyun</creator><creator>Park, Jihye</creator><creator>Kim, Eun-Jung</creator><creator>Cho, Hyun Seob</creator><creator>Kim, Heejin</creator><creator>Byun, Dohwan</creator><creator>Park, Yeong Mi</creator><creator>Kuo, Pallas</creator><creator>Lee, Seungchul</creator><creator>Tock, Andrew J.</creator><creator>Zhao, Xiaohui</creator><creator>Hwang, Ildoo</creator><creator>Choi, Kyuha</creator><creator>Henderson, Ian R.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5435-2026</orcidid><orcidid>https://orcid.org/0000-0002-9454-3326</orcidid><orcidid>https://orcid.org/0000-0002-1980-2252</orcidid><orcidid>https://orcid.org/0000-0002-4072-3807</orcidid><orcidid>https://orcid.org/0000-0001-5066-1489</orcidid><orcidid>https://orcid.org/0000-0002-6590-8314</orcidid><orcidid>https://orcid.org/0000-0001-9922-2815</orcidid></search><sort><creationdate>20210401</creationdate><title>HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis</title><author>Nageswaran, Divyashree C. ; Kim, Jaeil ; Lambing, Christophe ; Kim, Juhyun ; Park, Jihye ; Kim, Eun-Jung ; Cho, Hyun Seob ; Kim, Heejin ; Byun, Dohwan ; Park, Yeong Mi ; Kuo, Pallas ; Lee, Seungchul ; Tock, Andrew J. ; Zhao, Xiaohui ; Hwang, Ildoo ; Choi, Kyuha ; Henderson, Ian R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-28ecc18a783a029be84b1964887eeba9dbef6b67cbd4dd13ef3c6f4449a29ba33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>14</topic><topic>14/35</topic><topic>42</topic><topic>42/47</topic><topic>45</topic><topic>45/22</topic><topic>45/23</topic><topic>631/449/1659</topic><topic>631/449/2491</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Biomedical and Life Sciences</topic><topic>Chromosomes</topic><topic>Crossing Over, Genetic</topic><topic>Crossovers</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>Eukaryotes</topic><topic>Fluorescence</topic><topic>Genetic screening</topic><topic>Genomes</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Meiosis</topic><topic>MLH1 protein</topic><topic>Phosphatase</topic><topic>Plant Sciences</topic><topic>Protein phosphatase</topic><topic>Proteins</topic><topic>Recombination</topic><topic>Repair</topic><topic>Sequence Alignment</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nageswaran, Divyashree C.</creatorcontrib><creatorcontrib>Kim, Jaeil</creatorcontrib><creatorcontrib>Lambing, Christophe</creatorcontrib><creatorcontrib>Kim, Juhyun</creatorcontrib><creatorcontrib>Park, Jihye</creatorcontrib><creatorcontrib>Kim, Eun-Jung</creatorcontrib><creatorcontrib>Cho, Hyun Seob</creatorcontrib><creatorcontrib>Kim, Heejin</creatorcontrib><creatorcontrib>Byun, Dohwan</creatorcontrib><creatorcontrib>Park, Yeong Mi</creatorcontrib><creatorcontrib>Kuo, Pallas</creatorcontrib><creatorcontrib>Lee, Seungchul</creatorcontrib><creatorcontrib>Tock, Andrew J.</creatorcontrib><creatorcontrib>Zhao, Xiaohui</creatorcontrib><creatorcontrib>Hwang, Ildoo</creatorcontrib><creatorcontrib>Choi, Kyuha</creatorcontrib><creatorcontrib>Henderson, Ian R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nageswaran, Divyashree C.</au><au>Kim, Jaeil</au><au>Lambing, Christophe</au><au>Kim, Juhyun</au><au>Park, Jihye</au><au>Kim, Eun-Jung</au><au>Cho, Hyun Seob</au><au>Kim, Heejin</au><au>Byun, Dohwan</au><au>Park, Yeong Mi</au><au>Kuo, Pallas</au><au>Lee, Seungchul</au><au>Tock, Andrew J.</au><au>Zhao, Xiaohui</au><au>Hwang, Ildoo</au><au>Choi, Kyuha</au><au>Henderson, Ian R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2021-04-01</date><risdate>2021</risdate><volume>7</volume><issue>4</issue><spage>452</spage><epage>467</epage><pages>452-467</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>Meiotic crossovers are tightly restricted in most eukaryotes, despite an excess of initiating DNA double-strand breaks. The majority of plant crossovers are dependent on class I interfering repair, with a minority formed via the class II pathway. Class II repair is limited by anti-recombination pathways; however, similar pathways repressing class I crossovers have not been identified. Here, we performed a forward genetic screen in Arabidopsis using fluorescent crossover reporters to identify mutants with increased or decreased recombination frequency. We identified HIGH CROSSOVER RATE1 ( HCR1 ) as repressing crossovers and encoding PROTEIN PHOSPHATASE X1. Genome-wide analysis showed that hcr1 crossovers are increased in the distal chromosome arms. MLH1 foci significantly increase in hcr1 and crossover interference decreases, demonstrating an effect on class I repair. Consistently, yeast two-hybrid and in planta assays show interaction between HCR1 and class I proteins, including HEI10, PTD, MSH5 and MLH1. We propose that HCR1 plays a major role in opposition to pro-recombination kinases to restrict crossovers in Arabidopsis . HIGH CROSSOVER RATE1 ( HCR1 ) represses meiotic crossovers and encodes PROTEIN PHOSPHATASE X1, which therefore has a major role opposing the function of pro-recombination kinases to restrict crossovers in Arabidopsis .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33846593</pmid><doi>10.1038/s41477-021-00889-y</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-5435-2026</orcidid><orcidid>https://orcid.org/0000-0002-9454-3326</orcidid><orcidid>https://orcid.org/0000-0002-1980-2252</orcidid><orcidid>https://orcid.org/0000-0002-4072-3807</orcidid><orcidid>https://orcid.org/0000-0001-5066-1489</orcidid><orcidid>https://orcid.org/0000-0002-6590-8314</orcidid><orcidid>https://orcid.org/0000-0001-9922-2815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-0278
ispartof Nature plants, 2021-04, Vol.7 (4), p.452-467
issn 2055-0278
2055-0278
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7610654
source MEDLINE; SpringerLink Journals; Nature
subjects 14
14/35
42
42/47
45
45/22
45/23
631/449/1659
631/449/2491
Amino Acid Sequence
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Biomedical and Life Sciences
Chromosomes
Crossing Over, Genetic
Crossovers
Deoxyribonucleic acid
DNA
DNA damage
Eukaryotes
Fluorescence
Genetic screening
Genomes
Kinases
Life Sciences
Meiosis
MLH1 protein
Phosphatase
Plant Sciences
Protein phosphatase
Proteins
Recombination
Repair
Sequence Alignment
Yeasts
title HIGH CROSSOVER RATE1 encodes PROTEIN PHOSPHATASE X1 and restricts meiotic crossovers in Arabidopsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HIGH%20CROSSOVER%20RATE1%20encodes%20PROTEIN%20PHOSPHATASE%20X1%20and%20restricts%20meiotic%20crossovers%20in%20Arabidopsis&rft.jtitle=Nature%20plants&rft.au=Nageswaran,%20Divyashree%20C.&rft.date=2021-04-01&rft.volume=7&rft.issue=4&rft.spage=452&rft.epage=467&rft.pages=452-467&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-021-00889-y&rft_dat=%3Cproquest_pubme%3E2512333226%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2514870002&rft_id=info:pmid/33846593&rfr_iscdi=true