Measurement of bunch length and temporal distribution using accelerating radio frequency cavity in low-emittance injector

We demonstrate an experimental methodology for measuring the temporal distribution of pico-second level electron bunch with low energy using radial electric and azimuthal magnetic fields of an accelerating ( TM 01 mode) radio frequency (RF) cavity that is used for accelerating electron beams in a li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-11, Vol.10 (1), p.18905-18905, Article 18905
Hauptverfasser: Hwang, Ji-Gwang, Miyajima, Tsukasa, Honda, Yosuke, Kim, Eun-San
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18905
container_issue 1
container_start_page 18905
container_title Scientific reports
container_volume 10
creator Hwang, Ji-Gwang
Miyajima, Tsukasa
Honda, Yosuke
Kim, Eun-San
description We demonstrate an experimental methodology for measuring the temporal distribution of pico-second level electron bunch with low energy using radial electric and azimuthal magnetic fields of an accelerating ( TM 01 mode) radio frequency (RF) cavity that is used for accelerating electron beams in a linear accelerator. In this new technique, an accelerating RF cavity provides a phase-dependent transverse kick to the electrons, resulting in the linear coupling of the trajectory angle with the longitudinal position inside the bunch. This method does not require additional devices on the beamline since it uses an existing accelerating cavity for the projection of the temporal distribution to the transverse direction. We present the theoretical basis of the proposed method and validate it experimentally in the compact-energy recovery linac accelerator at KEK. Measurements were demonstrated using a 2-cell superconducting booster cavity with a peak on-axis accelerating field ( E 0 ) of 7.21 MV/m.
doi_str_mv 10.1038/s41598-020-76054-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7609657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471531766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-c98ddffce78d3c40c94683cf0abd050727cf18b7e93c7d13fbb25cd158108d803</originalsourceid><addsrcrecordid>eNp9UcuOFCEUrRiNMxnnB1yRuHFTDs-C2piYia9kjBtdEwou3XSqoAVqOv33Q9sTXwvZXLicc7iH03UvCX5DMFM3hRMxqh5T3MsBC94fnnSXFHPRU0bp0z_2F911KTvclqAjJ-Pz7oIxwvmg8GV3_AKmrBkWiBUlj6Y12i2aIW7qFpnoUIVln7KZkQul5jCtNaSI1hLiBhlrYYZs6umQjQsJ-Qw_Voj2iKy5D_WIQkRzOvSwhFpNtNAaO7A15RfdM2_mAteP9ar7_uH9t9tP_d3Xj59v3931lgtSezsq57y3IJVjlmM7tsGZ9dhMDgssqbSeqEnCyKx0hPlposI6IhTByinMrrq3Z939Oi3gbDPa7Oh9DovJR51M0H_fxLDVm3Sv27eOg5BN4PWjQE7NW6l6CaUZn02EtBZNuZDDiBU9vfXqH-gurTk2ew0liWBEDkND0TPK5lRKBv9rGIL1KVx9Dle3cPXPcPWhkdiZVBo4biD_lv4P6wE5UKoz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471531766</pqid></control><display><type>article</type><title>Measurement of bunch length and temporal distribution using accelerating radio frequency cavity in low-emittance injector</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Hwang, Ji-Gwang ; Miyajima, Tsukasa ; Honda, Yosuke ; Kim, Eun-San</creator><creatorcontrib>Hwang, Ji-Gwang ; Miyajima, Tsukasa ; Honda, Yosuke ; Kim, Eun-San</creatorcontrib><description>We demonstrate an experimental methodology for measuring the temporal distribution of pico-second level electron bunch with low energy using radial electric and azimuthal magnetic fields of an accelerating ( TM 01 mode) radio frequency (RF) cavity that is used for accelerating electron beams in a linear accelerator. In this new technique, an accelerating RF cavity provides a phase-dependent transverse kick to the electrons, resulting in the linear coupling of the trajectory angle with the longitudinal position inside the bunch. This method does not require additional devices on the beamline since it uses an existing accelerating cavity for the projection of the temporal distribution to the transverse direction. We present the theoretical basis of the proposed method and validate it experimentally in the compact-energy recovery linac accelerator at KEK. Measurements were demonstrated using a 2-cell superconducting booster cavity with a peak on-axis accelerating field ( E 0 ) of 7.21 MV/m.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-76054-w</identifier><identifier>PMID: 33144680</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/1960 ; 639/766/530 ; 639/766/930 ; Energy ; Energy recovery ; Experimental methods ; Humanities and Social Sciences ; Magnetic fields ; multidisciplinary ; Science ; Science (multidisciplinary) ; Temporal distribution</subject><ispartof>Scientific reports, 2020-11, Vol.10 (1), p.18905-18905, Article 18905</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-c98ddffce78d3c40c94683cf0abd050727cf18b7e93c7d13fbb25cd158108d803</citedby><cites>FETCH-LOGICAL-c451t-c98ddffce78d3c40c94683cf0abd050727cf18b7e93c7d13fbb25cd158108d803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609657/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7609657/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids></links><search><creatorcontrib>Hwang, Ji-Gwang</creatorcontrib><creatorcontrib>Miyajima, Tsukasa</creatorcontrib><creatorcontrib>Honda, Yosuke</creatorcontrib><creatorcontrib>Kim, Eun-San</creatorcontrib><title>Measurement of bunch length and temporal distribution using accelerating radio frequency cavity in low-emittance injector</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>We demonstrate an experimental methodology for measuring the temporal distribution of pico-second level electron bunch with low energy using radial electric and azimuthal magnetic fields of an accelerating ( TM 01 mode) radio frequency (RF) cavity that is used for accelerating electron beams in a linear accelerator. In this new technique, an accelerating RF cavity provides a phase-dependent transverse kick to the electrons, resulting in the linear coupling of the trajectory angle with the longitudinal position inside the bunch. This method does not require additional devices on the beamline since it uses an existing accelerating cavity for the projection of the temporal distribution to the transverse direction. We present the theoretical basis of the proposed method and validate it experimentally in the compact-energy recovery linac accelerator at KEK. Measurements were demonstrated using a 2-cell superconducting booster cavity with a peak on-axis accelerating field ( E 0 ) of 7.21 MV/m.</description><subject>639/766/1960</subject><subject>639/766/530</subject><subject>639/766/930</subject><subject>Energy</subject><subject>Energy recovery</subject><subject>Experimental methods</subject><subject>Humanities and Social Sciences</subject><subject>Magnetic fields</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temporal distribution</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9UcuOFCEUrRiNMxnnB1yRuHFTDs-C2piYia9kjBtdEwou3XSqoAVqOv33Q9sTXwvZXLicc7iH03UvCX5DMFM3hRMxqh5T3MsBC94fnnSXFHPRU0bp0z_2F911KTvclqAjJ-Pz7oIxwvmg8GV3_AKmrBkWiBUlj6Y12i2aIW7qFpnoUIVln7KZkQul5jCtNaSI1hLiBhlrYYZs6umQjQsJ-Qw_Voj2iKy5D_WIQkRzOvSwhFpNtNAaO7A15RfdM2_mAteP9ar7_uH9t9tP_d3Xj59v3931lgtSezsq57y3IJVjlmM7tsGZ9dhMDgssqbSeqEnCyKx0hPlposI6IhTByinMrrq3Z939Oi3gbDPa7Oh9DovJR51M0H_fxLDVm3Sv27eOg5BN4PWjQE7NW6l6CaUZn02EtBZNuZDDiBU9vfXqH-gurTk2ew0liWBEDkND0TPK5lRKBv9rGIL1KVx9Dle3cPXPcPWhkdiZVBo4biD_lv4P6wE5UKoz</recordid><startdate>20201103</startdate><enddate>20201103</enddate><creator>Hwang, Ji-Gwang</creator><creator>Miyajima, Tsukasa</creator><creator>Honda, Yosuke</creator><creator>Kim, Eun-San</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201103</creationdate><title>Measurement of bunch length and temporal distribution using accelerating radio frequency cavity in low-emittance injector</title><author>Hwang, Ji-Gwang ; Miyajima, Tsukasa ; Honda, Yosuke ; Kim, Eun-San</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-c98ddffce78d3c40c94683cf0abd050727cf18b7e93c7d13fbb25cd158108d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/766/1960</topic><topic>639/766/530</topic><topic>639/766/930</topic><topic>Energy</topic><topic>Energy recovery</topic><topic>Experimental methods</topic><topic>Humanities and Social Sciences</topic><topic>Magnetic fields</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temporal distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Ji-Gwang</creatorcontrib><creatorcontrib>Miyajima, Tsukasa</creatorcontrib><creatorcontrib>Honda, Yosuke</creatorcontrib><creatorcontrib>Kim, Eun-San</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Ji-Gwang</au><au>Miyajima, Tsukasa</au><au>Honda, Yosuke</au><au>Kim, Eun-San</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of bunch length and temporal distribution using accelerating radio frequency cavity in low-emittance injector</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-11-03</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>18905</spage><epage>18905</epage><pages>18905-18905</pages><artnum>18905</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We demonstrate an experimental methodology for measuring the temporal distribution of pico-second level electron bunch with low energy using radial electric and azimuthal magnetic fields of an accelerating ( TM 01 mode) radio frequency (RF) cavity that is used for accelerating electron beams in a linear accelerator. In this new technique, an accelerating RF cavity provides a phase-dependent transverse kick to the electrons, resulting in the linear coupling of the trajectory angle with the longitudinal position inside the bunch. This method does not require additional devices on the beamline since it uses an existing accelerating cavity for the projection of the temporal distribution to the transverse direction. We present the theoretical basis of the proposed method and validate it experimentally in the compact-energy recovery linac accelerator at KEK. Measurements were demonstrated using a 2-cell superconducting booster cavity with a peak on-axis accelerating field ( E 0 ) of 7.21 MV/m.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33144680</pmid><doi>10.1038/s41598-020-76054-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-11, Vol.10 (1), p.18905-18905, Article 18905
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7609657
source Nature Free; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 639/766/1960
639/766/530
639/766/930
Energy
Energy recovery
Experimental methods
Humanities and Social Sciences
Magnetic fields
multidisciplinary
Science
Science (multidisciplinary)
Temporal distribution
title Measurement of bunch length and temporal distribution using accelerating radio frequency cavity in low-emittance injector
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T11%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20bunch%20length%20and%20temporal%20distribution%20using%20accelerating%20radio%20frequency%20cavity%20in%20low-emittance%20injector&rft.jtitle=Scientific%20reports&rft.au=Hwang,%20Ji-Gwang&rft.date=2020-11-03&rft.volume=10&rft.issue=1&rft.spage=18905&rft.epage=18905&rft.pages=18905-18905&rft.artnum=18905&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-76054-w&rft_dat=%3Cproquest_pubme%3E2471531766%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471531766&rft_id=info:pmid/33144680&rfr_iscdi=true