Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system
Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while...
Gespeichert in:
Veröffentlicht in: | Neuropsychopharmacology (New York, N.Y.) N.Y.), 2020-10, Vol.45 (11), p.1781-1792 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1792 |
---|---|
container_issue | 11 |
container_start_page | 1781 |
container_title | Neuropsychopharmacology (New York, N.Y.) |
container_volume | 45 |
creator | Lefevre, Emilia M Pisansky, Marc T Toddes, Carlee Baruffaldi, Federico Pravetoni, Marco Tian, Lin Kono, Thomas J Y Rothwell, Patrick E |
description | Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits. |
doi_str_mv | 10.1038/s41386-020-0643-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7608117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2476734754</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-69b9ff0dac3e80e8e229e724fa97c9433e9529046dc63ceaf566a81679acda2a3</originalsourceid><addsrcrecordid>eNp9kU1rFTEUhoMo9lr9AW4k4MZNNF-TTDaCFD8KhW5a6C7kZs60qTPJmGTK7b83l1uLuugqB_Kcl3POg9BbRj8yKvpPRTLRK0I5JVRJQXbP0IZpSYkS8uo52tDeCMKEuDpCr0q5pZR1WvUv0ZHgVBvK5QYtp7FCzutSQ4o4jdinWENc01pwWkIKA4bdksqaoRXOQ966CgUPeb0mcJd-woDd4Jbq9gEFh4jrDeAZSprCvA0eD2lxc4iAy32pML9GL0Y3FXjz8B6jy29fL05-kLPz76cnX86Il11XiTJbM450cF5AT6EHzg1oLkdntDdSCDAdN1SqwSvhwY2dUq5nShvnB8edOEafD7nLup1h8BBrdpNdcphdvrfJBfvvTww39jrdWa1oz5huAR8eAnL6tUKpdg7FwzS5CO06lgslqWBNQUPf_4fepjXHtp7lUistpO7k09TepGQdaxQ7UD6nUjKMjyMzavfW7cG6bdbt3rrdtZ53f-_62PFHs_gNl4-rpg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441384151</pqid></control><display><type>article</type><title>Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lefevre, Emilia M ; Pisansky, Marc T ; Toddes, Carlee ; Baruffaldi, Federico ; Pravetoni, Marco ; Tian, Lin ; Kono, Thomas J Y ; Rothwell, Patrick E</creator><creatorcontrib>Lefevre, Emilia M ; Pisansky, Marc T ; Toddes, Carlee ; Baruffaldi, Federico ; Pravetoni, Marco ; Tian, Lin ; Kono, Thomas J Y ; Rothwell, Patrick E</creatorcontrib><description>Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/s41386-020-0643-x</identifier><identifier>PMID: 32079024</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Abuse ; Adaptation ; Addictions ; Analgesics, Opioid ; Animal behavior ; Animals ; Brain ; Caudate-putamen ; Dopamine ; Drug tolerance ; Female ; Gene expression ; Genomes ; Male ; Mesolimbic system ; Mice ; Morphine ; Naloxone ; Narcotics ; Neostriatum ; Nucleus Accumbens ; Opioids ; Pharmaceutical Preparations ; Photometry ; Reinforcement ; Ribonucleic acid ; RNA ; Transcription ; Withdrawal</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2020-10, Vol.45 (11), p.1781-1792</ispartof><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2020.</rights><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-69b9ff0dac3e80e8e229e724fa97c9433e9529046dc63ceaf566a81679acda2a3</citedby><cites>FETCH-LOGICAL-c455t-69b9ff0dac3e80e8e229e724fa97c9433e9529046dc63ceaf566a81679acda2a3</cites><orcidid>0000-0003-0514-2510 ; 0000-0002-9462-7714 ; 0000-0002-6116-4549 ; 0000-0002-1388-3194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608117/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7608117/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32079024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefevre, Emilia M</creatorcontrib><creatorcontrib>Pisansky, Marc T</creatorcontrib><creatorcontrib>Toddes, Carlee</creatorcontrib><creatorcontrib>Baruffaldi, Federico</creatorcontrib><creatorcontrib>Pravetoni, Marco</creatorcontrib><creatorcontrib>Tian, Lin</creatorcontrib><creatorcontrib>Kono, Thomas J Y</creatorcontrib><creatorcontrib>Rothwell, Patrick E</creatorcontrib><title>Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits.</description><subject>Abuse</subject><subject>Adaptation</subject><subject>Addictions</subject><subject>Analgesics, Opioid</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Brain</subject><subject>Caudate-putamen</subject><subject>Dopamine</subject><subject>Drug tolerance</subject><subject>Female</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Male</subject><subject>Mesolimbic system</subject><subject>Mice</subject><subject>Morphine</subject><subject>Naloxone</subject><subject>Narcotics</subject><subject>Neostriatum</subject><subject>Nucleus Accumbens</subject><subject>Opioids</subject><subject>Pharmaceutical Preparations</subject><subject>Photometry</subject><subject>Reinforcement</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Transcription</subject><subject>Withdrawal</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1rFTEUhoMo9lr9AW4k4MZNNF-TTDaCFD8KhW5a6C7kZs60qTPJmGTK7b83l1uLuugqB_Kcl3POg9BbRj8yKvpPRTLRK0I5JVRJQXbP0IZpSYkS8uo52tDeCMKEuDpCr0q5pZR1WvUv0ZHgVBvK5QYtp7FCzutSQ4o4jdinWENc01pwWkIKA4bdksqaoRXOQ966CgUPeb0mcJd-woDd4Jbq9gEFh4jrDeAZSprCvA0eD2lxc4iAy32pML9GL0Y3FXjz8B6jy29fL05-kLPz76cnX86Il11XiTJbM450cF5AT6EHzg1oLkdntDdSCDAdN1SqwSvhwY2dUq5nShvnB8edOEafD7nLup1h8BBrdpNdcphdvrfJBfvvTww39jrdWa1oz5huAR8eAnL6tUKpdg7FwzS5CO06lgslqWBNQUPf_4fepjXHtp7lUistpO7k09TepGQdaxQ7UD6nUjKMjyMzavfW7cG6bdbt3rrdtZ53f-_62PFHs_gNl4-rpg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Lefevre, Emilia M</creator><creator>Pisansky, Marc T</creator><creator>Toddes, Carlee</creator><creator>Baruffaldi, Federico</creator><creator>Pravetoni, Marco</creator><creator>Tian, Lin</creator><creator>Kono, Thomas J Y</creator><creator>Rothwell, Patrick E</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0514-2510</orcidid><orcidid>https://orcid.org/0000-0002-9462-7714</orcidid><orcidid>https://orcid.org/0000-0002-6116-4549</orcidid><orcidid>https://orcid.org/0000-0002-1388-3194</orcidid></search><sort><creationdate>20201001</creationdate><title>Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system</title><author>Lefevre, Emilia M ; Pisansky, Marc T ; Toddes, Carlee ; Baruffaldi, Federico ; Pravetoni, Marco ; Tian, Lin ; Kono, Thomas J Y ; Rothwell, Patrick E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-69b9ff0dac3e80e8e229e724fa97c9433e9529046dc63ceaf566a81679acda2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abuse</topic><topic>Adaptation</topic><topic>Addictions</topic><topic>Analgesics, Opioid</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Brain</topic><topic>Caudate-putamen</topic><topic>Dopamine</topic><topic>Drug tolerance</topic><topic>Female</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Male</topic><topic>Mesolimbic system</topic><topic>Mice</topic><topic>Morphine</topic><topic>Naloxone</topic><topic>Narcotics</topic><topic>Neostriatum</topic><topic>Nucleus Accumbens</topic><topic>Opioids</topic><topic>Pharmaceutical Preparations</topic><topic>Photometry</topic><topic>Reinforcement</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Transcription</topic><topic>Withdrawal</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefevre, Emilia M</creatorcontrib><creatorcontrib>Pisansky, Marc T</creatorcontrib><creatorcontrib>Toddes, Carlee</creatorcontrib><creatorcontrib>Baruffaldi, Federico</creatorcontrib><creatorcontrib>Pravetoni, Marco</creatorcontrib><creatorcontrib>Tian, Lin</creatorcontrib><creatorcontrib>Kono, Thomas J Y</creatorcontrib><creatorcontrib>Rothwell, Patrick E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefevre, Emilia M</au><au>Pisansky, Marc T</au><au>Toddes, Carlee</au><au>Baruffaldi, Federico</au><au>Pravetoni, Marco</au><au>Tian, Lin</au><au>Kono, Thomas J Y</au><au>Rothwell, Patrick E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>45</volume><issue>11</issue><spage>1781</spage><epage>1792</epage><pages>1781-1792</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><abstract>Drug-evoked adaptations in the mesolimbic dopamine system are postulated to drive opioid abuse and addiction. These adaptations vary in magnitude and direction following different patterns of opioid exposure, but few studies have systematically manipulated the pattern of opioid administration while measuring neurobiological and behavioral impact. We exposed male and female mice to morphine for one week, with administration patterns that were either intermittent (daily injections) or continuous (osmotic minipump infusion). We then interrupted continuous morphine exposure with either naloxone-precipitated or spontaneous withdrawal. Continuous morphine exposure caused tolerance to the psychomotor-activating effects of morphine, whereas both intermittent and interrupted morphine exposure caused long-lasting psychomotor sensitization. Given links between locomotor sensitization and mesolimbic dopamine signaling, we used fiber photometry and a genetically encoded dopamine sensor to conduct longitudinal measurements of dopamine dynamics in the nucleus accumbens. Locomotor sensitization caused by interrupted morphine exposure was accompanied by enhanced dopamine signaling in the nucleus accumbens. To further assess downstream consequences on striatal gene expression, we used next-generation RNA sequencing to perform genome-wide transcriptional profiling in the nucleus accumbens and dorsal striatum. The interruption of continuous morphine exposure exacerbated drug-evoked transcriptional changes in both nucleus accumbens and dorsal striatum, dramatically increasing differential gene expression and engaging unique signaling pathways. Our study indicates that opioid-evoked adaptations in brain function and behavior are critically dependent on the pattern of drug administration, and exacerbated by interruption of continuous exposure. Maintaining continuity of chronic opioid administration may, therefore, represent a strategy to minimize iatrogenic effects on brain reward circuits.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>32079024</pmid><doi>10.1038/s41386-020-0643-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0514-2510</orcidid><orcidid>https://orcid.org/0000-0002-9462-7714</orcidid><orcidid>https://orcid.org/0000-0002-6116-4549</orcidid><orcidid>https://orcid.org/0000-0002-1388-3194</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-133X |
ispartof | Neuropsychopharmacology (New York, N.Y.), 2020-10, Vol.45 (11), p.1781-1792 |
issn | 0893-133X 1740-634X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7608117 |
source | MEDLINE; Springer Nature - Complete Springer Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Abuse Adaptation Addictions Analgesics, Opioid Animal behavior Animals Brain Caudate-putamen Dopamine Drug tolerance Female Gene expression Genomes Male Mesolimbic system Mice Morphine Naloxone Narcotics Neostriatum Nucleus Accumbens Opioids Pharmaceutical Preparations Photometry Reinforcement Ribonucleic acid RNA Transcription Withdrawal |
title | Interruption of continuous opioid exposure exacerbates drug-evoked adaptations in the mesolimbic dopamine system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interruption%20of%20continuous%20opioid%20exposure%20exacerbates%20drug-evoked%20adaptations%20in%20the%20mesolimbic%20dopamine%20system&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Lefevre,%20Emilia%20M&rft.date=2020-10-01&rft.volume=45&rft.issue=11&rft.spage=1781&rft.epage=1792&rft.pages=1781-1792&rft.issn=0893-133X&rft.eissn=1740-634X&rft_id=info:doi/10.1038/s41386-020-0643-x&rft_dat=%3Cproquest_pubme%3E2476734754%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441384151&rft_id=info:pmid/32079024&rfr_iscdi=true |