Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy

Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blood diseases. However, clinical applications can be limited by suboptimal hematopoietic stem cell (HSC) transduction and insufficient quantities of available vector. We recently reported gene therapy for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2020-12, Vol.27 (12), p.545-556
Hauptverfasser: Jang, Yoonjeong, Kim, Yoon-Sang, Wielgosz, Matthew M., Ferrara, Francesca, Ma, Zhijun, Condori, Jose, Palmer, Lance E., Zhao, Xiwen, Kang, Guolian, Rawlings, David J., Zhou, Sheng, Ryu, Byoung Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 12
container_start_page 545
container_title Gene therapy
container_volume 27
creator Jang, Yoonjeong
Kim, Yoon-Sang
Wielgosz, Matthew M.
Ferrara, Francesca
Ma, Zhijun
Condori, Jose
Palmer, Lance E.
Zhao, Xiwen
Kang, Guolian
Rawlings, David J.
Zhou, Sheng
Ryu, Byoung Y.
description Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blood diseases. However, clinical applications can be limited by suboptimal hematopoietic stem cell (HSC) transduction and insufficient quantities of available vector. We recently reported gene therapy for X-linked severe combined immunodeficiency using a protocol in which patient CD34 + cells were incubated with two successive transductions. Here we describe an improved protocol for LV delivery to CD34 + cells that simplifies product manipulation, reduces vector consumption, and achieves greater vector copy number (VCN) of repopulating HSCs in mouse xenotransplantation assays. Notable findings include the following: (1) the VCN of CD34 + cells measured shortly after transduction did not always correlate with the VCN of repopulating HSCs after xenotransplantation; (2) single-step transduction at higher CD34 + cell concentrations (2–4 × 10 6 /ml) conserved LV without compromising HSC VCN; (3) poloxamer F108 (LentiBOOST) increased HSC VCN by two- to threefold (average from three donors); (4) although LentiBOOST + prostaglandin E2 combination further increased VCN in vitro, the VCN observed in vivo were similar to LentiBOOST alone; (5) cyclosporine H increased the HSC VCN to a similar or greater extent with LentiBOOST in vivo. Our findings delineate an improved protocol to increase the VCN of HSCs after CD34 + cell transduction with clinically relevant LVs.
doi_str_mv 10.1038/s41434-020-0150-z
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7606410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A649635850</galeid><sourcerecordid>A649635850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635t-3f87a7b418417475a6b5c2d34deaf35973c7f20e999d380f7af16d40a22f653c3</originalsourceid><addsrcrecordid>eNp1kltr3DAQhUVpabbb_oC-FEMh0AenutmyXwoh9BIIBHp7FVp5ZCvY0laSl2Z_fbVsmsTQogeB5juHmdFB6DXBZwSz5n3khDNeYopLTCpc7p-gFeGiLite06dohdu6LQWhzQl6EeMNxpiLhj5HJ4yyLG34Cv283iY72b11fTGCS3ZngxqLHejkQ5GCcrGbdbLeFd4UA0wq-a23kKwuYoKp0DCOsTAZ7sFBkQYIanv7Ej0zaozw6u5eox-fPn6_-FJeXX--vDi_KnXNqlQy0wglNpw0nAguKlVvKk07xjtQhlWtYFoYiqFt24412AhlSN1xrCg1dcU0W6MPR9_tvJmg03mC3L7cBjupcCu9snJZcXaQvd9JUeOa5yWu0ds7g-B_zRCTvPFzcLlnSblgpBWEVQ9Ur0aQ1hmfzfRko5bnNW_zLE118Dr7B5VPB5PV3oGx-X0heLcQZCbB79SrOUZ5-e3rkj19xA6gxjREP86Hr4lLkBxBHXyMAcz9NgiWh9jIY2xkjo08xEbus-bN4zXeK_7mJAP0CMRccj2EhzX93_UP-ijMtA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473197135</pqid></control><display><type>article</type><title>Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy</title><source>SpringerLink Journals</source><creator>Jang, Yoonjeong ; Kim, Yoon-Sang ; Wielgosz, Matthew M. ; Ferrara, Francesca ; Ma, Zhijun ; Condori, Jose ; Palmer, Lance E. ; Zhao, Xiwen ; Kang, Guolian ; Rawlings, David J. ; Zhou, Sheng ; Ryu, Byoung Y.</creator><creatorcontrib>Jang, Yoonjeong ; Kim, Yoon-Sang ; Wielgosz, Matthew M. ; Ferrara, Francesca ; Ma, Zhijun ; Condori, Jose ; Palmer, Lance E. ; Zhao, Xiwen ; Kang, Guolian ; Rawlings, David J. ; Zhou, Sheng ; Ryu, Byoung Y.</creatorcontrib><description>Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blood diseases. However, clinical applications can be limited by suboptimal hematopoietic stem cell (HSC) transduction and insufficient quantities of available vector. We recently reported gene therapy for X-linked severe combined immunodeficiency using a protocol in which patient CD34 + cells were incubated with two successive transductions. Here we describe an improved protocol for LV delivery to CD34 + cells that simplifies product manipulation, reduces vector consumption, and achieves greater vector copy number (VCN) of repopulating HSCs in mouse xenotransplantation assays. Notable findings include the following: (1) the VCN of CD34 + cells measured shortly after transduction did not always correlate with the VCN of repopulating HSCs after xenotransplantation; (2) single-step transduction at higher CD34 + cell concentrations (2–4 × 10 6 /ml) conserved LV without compromising HSC VCN; (3) poloxamer F108 (LentiBOOST) increased HSC VCN by two- to threefold (average from three donors); (4) although LentiBOOST + prostaglandin E2 combination further increased VCN in vitro, the VCN observed in vivo were similar to LentiBOOST alone; (5) cyclosporine H increased the HSC VCN to a similar or greater extent with LentiBOOST in vivo. Our findings delineate an improved protocol to increase the VCN of HSCs after CD34 + cell transduction with clinically relevant LVs.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/s41434-020-0150-z</identifier><identifier>PMID: 32341484</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/100 ; 13/31 ; 13/44 ; 38/44 ; 38/77 ; 42 ; 631/1647/2300/1850 ; 631/61/2300/1850 ; 64 ; 64/60 ; Autografts ; Biomedical and Life Sciences ; Biomedicine ; Care and treatment ; CD34 antigen ; Cell Biology ; Copy number ; Cyclosporins ; Expression vectors ; Gene Expression ; Gene Therapy ; Health aspects ; Hematological diseases ; Hematopoietic stem cells ; Human Genetics ; Immunological deficiency syndromes ; Lentivirus ; Methods ; Nanotechnology ; Patient outcomes ; Prostaglandin E2 ; Severe combined immunodeficiency ; Stem cell transplantation ; Stem cells ; Transduction ; Transplantation ; Xenografts</subject><ispartof>Gene therapy, 2020-12, Vol.27 (12), p.545-556</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>COPYRIGHT 2020 Nature Publishing Group</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c635t-3f87a7b418417475a6b5c2d34deaf35973c7f20e999d380f7af16d40a22f653c3</citedby><cites>FETCH-LOGICAL-c635t-3f87a7b418417475a6b5c2d34deaf35973c7f20e999d380f7af16d40a22f653c3</cites><orcidid>0000-0001-5678-8843 ; 0000-0002-4973-1520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41434-020-0150-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41434-020-0150-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32341484$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jang, Yoonjeong</creatorcontrib><creatorcontrib>Kim, Yoon-Sang</creatorcontrib><creatorcontrib>Wielgosz, Matthew M.</creatorcontrib><creatorcontrib>Ferrara, Francesca</creatorcontrib><creatorcontrib>Ma, Zhijun</creatorcontrib><creatorcontrib>Condori, Jose</creatorcontrib><creatorcontrib>Palmer, Lance E.</creatorcontrib><creatorcontrib>Zhao, Xiwen</creatorcontrib><creatorcontrib>Kang, Guolian</creatorcontrib><creatorcontrib>Rawlings, David J.</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Ryu, Byoung Y.</creatorcontrib><title>Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blood diseases. However, clinical applications can be limited by suboptimal hematopoietic stem cell (HSC) transduction and insufficient quantities of available vector. We recently reported gene therapy for X-linked severe combined immunodeficiency using a protocol in which patient CD34 + cells were incubated with two successive transductions. Here we describe an improved protocol for LV delivery to CD34 + cells that simplifies product manipulation, reduces vector consumption, and achieves greater vector copy number (VCN) of repopulating HSCs in mouse xenotransplantation assays. Notable findings include the following: (1) the VCN of CD34 + cells measured shortly after transduction did not always correlate with the VCN of repopulating HSCs after xenotransplantation; (2) single-step transduction at higher CD34 + cell concentrations (2–4 × 10 6 /ml) conserved LV without compromising HSC VCN; (3) poloxamer F108 (LentiBOOST) increased HSC VCN by two- to threefold (average from three donors); (4) although LentiBOOST + prostaglandin E2 combination further increased VCN in vitro, the VCN observed in vivo were similar to LentiBOOST alone; (5) cyclosporine H increased the HSC VCN to a similar or greater extent with LentiBOOST in vivo. Our findings delineate an improved protocol to increase the VCN of HSCs after CD34 + cell transduction with clinically relevant LVs.</description><subject>13/100</subject><subject>13/31</subject><subject>13/44</subject><subject>38/44</subject><subject>38/77</subject><subject>42</subject><subject>631/1647/2300/1850</subject><subject>631/61/2300/1850</subject><subject>64</subject><subject>64/60</subject><subject>Autografts</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Care and treatment</subject><subject>CD34 antigen</subject><subject>Cell Biology</subject><subject>Copy number</subject><subject>Cyclosporins</subject><subject>Expression vectors</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Health aspects</subject><subject>Hematological diseases</subject><subject>Hematopoietic stem cells</subject><subject>Human Genetics</subject><subject>Immunological deficiency syndromes</subject><subject>Lentivirus</subject><subject>Methods</subject><subject>Nanotechnology</subject><subject>Patient outcomes</subject><subject>Prostaglandin E2</subject><subject>Severe combined immunodeficiency</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Transduction</subject><subject>Transplantation</subject><subject>Xenografts</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kltr3DAQhUVpabbb_oC-FEMh0AenutmyXwoh9BIIBHp7FVp5ZCvY0laSl2Z_fbVsmsTQogeB5juHmdFB6DXBZwSz5n3khDNeYopLTCpc7p-gFeGiLite06dohdu6LQWhzQl6EeMNxpiLhj5HJ4yyLG34Cv283iY72b11fTGCS3ZngxqLHejkQ5GCcrGbdbLeFd4UA0wq-a23kKwuYoKp0DCOsTAZ7sFBkQYIanv7Ej0zaozw6u5eox-fPn6_-FJeXX--vDi_KnXNqlQy0wglNpw0nAguKlVvKk07xjtQhlWtYFoYiqFt24412AhlSN1xrCg1dcU0W6MPR9_tvJmg03mC3L7cBjupcCu9snJZcXaQvd9JUeOa5yWu0ds7g-B_zRCTvPFzcLlnSblgpBWEVQ9Ur0aQ1hmfzfRko5bnNW_zLE118Dr7B5VPB5PV3oGx-X0heLcQZCbB79SrOUZ5-e3rkj19xA6gxjREP86Hr4lLkBxBHXyMAcz9NgiWh9jIY2xkjo08xEbus-bN4zXeK_7mJAP0CMRccj2EhzX93_UP-ijMtA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Jang, Yoonjeong</creator><creator>Kim, Yoon-Sang</creator><creator>Wielgosz, Matthew M.</creator><creator>Ferrara, Francesca</creator><creator>Ma, Zhijun</creator><creator>Condori, Jose</creator><creator>Palmer, Lance E.</creator><creator>Zhao, Xiwen</creator><creator>Kang, Guolian</creator><creator>Rawlings, David J.</creator><creator>Zhou, Sheng</creator><creator>Ryu, Byoung Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5678-8843</orcidid><orcidid>https://orcid.org/0000-0002-4973-1520</orcidid></search><sort><creationdate>20201201</creationdate><title>Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy</title><author>Jang, Yoonjeong ; Kim, Yoon-Sang ; Wielgosz, Matthew M. ; Ferrara, Francesca ; Ma, Zhijun ; Condori, Jose ; Palmer, Lance E. ; Zhao, Xiwen ; Kang, Guolian ; Rawlings, David J. ; Zhou, Sheng ; Ryu, Byoung Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635t-3f87a7b418417475a6b5c2d34deaf35973c7f20e999d380f7af16d40a22f653c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>13/100</topic><topic>13/31</topic><topic>13/44</topic><topic>38/44</topic><topic>38/77</topic><topic>42</topic><topic>631/1647/2300/1850</topic><topic>631/61/2300/1850</topic><topic>64</topic><topic>64/60</topic><topic>Autografts</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Care and treatment</topic><topic>CD34 antigen</topic><topic>Cell Biology</topic><topic>Copy number</topic><topic>Cyclosporins</topic><topic>Expression vectors</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Health aspects</topic><topic>Hematological diseases</topic><topic>Hematopoietic stem cells</topic><topic>Human Genetics</topic><topic>Immunological deficiency syndromes</topic><topic>Lentivirus</topic><topic>Methods</topic><topic>Nanotechnology</topic><topic>Patient outcomes</topic><topic>Prostaglandin E2</topic><topic>Severe combined immunodeficiency</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Transduction</topic><topic>Transplantation</topic><topic>Xenografts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jang, Yoonjeong</creatorcontrib><creatorcontrib>Kim, Yoon-Sang</creatorcontrib><creatorcontrib>Wielgosz, Matthew M.</creatorcontrib><creatorcontrib>Ferrara, Francesca</creatorcontrib><creatorcontrib>Ma, Zhijun</creatorcontrib><creatorcontrib>Condori, Jose</creatorcontrib><creatorcontrib>Palmer, Lance E.</creatorcontrib><creatorcontrib>Zhao, Xiwen</creatorcontrib><creatorcontrib>Kang, Guolian</creatorcontrib><creatorcontrib>Rawlings, David J.</creatorcontrib><creatorcontrib>Zhou, Sheng</creatorcontrib><creatorcontrib>Ryu, Byoung Y.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jang, Yoonjeong</au><au>Kim, Yoon-Sang</au><au>Wielgosz, Matthew M.</au><au>Ferrara, Francesca</au><au>Ma, Zhijun</au><au>Condori, Jose</au><au>Palmer, Lance E.</au><au>Zhao, Xiwen</au><au>Kang, Guolian</au><au>Rawlings, David J.</au><au>Zhou, Sheng</au><au>Ryu, Byoung Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>27</volume><issue>12</issue><spage>545</spage><epage>556</epage><pages>545-556</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>Autologous gene therapy using lentiviral vectors (LVs) holds promise for treating monogenetic blood diseases. However, clinical applications can be limited by suboptimal hematopoietic stem cell (HSC) transduction and insufficient quantities of available vector. We recently reported gene therapy for X-linked severe combined immunodeficiency using a protocol in which patient CD34 + cells were incubated with two successive transductions. Here we describe an improved protocol for LV delivery to CD34 + cells that simplifies product manipulation, reduces vector consumption, and achieves greater vector copy number (VCN) of repopulating HSCs in mouse xenotransplantation assays. Notable findings include the following: (1) the VCN of CD34 + cells measured shortly after transduction did not always correlate with the VCN of repopulating HSCs after xenotransplantation; (2) single-step transduction at higher CD34 + cell concentrations (2–4 × 10 6 /ml) conserved LV without compromising HSC VCN; (3) poloxamer F108 (LentiBOOST) increased HSC VCN by two- to threefold (average from three donors); (4) although LentiBOOST + prostaglandin E2 combination further increased VCN in vitro, the VCN observed in vivo were similar to LentiBOOST alone; (5) cyclosporine H increased the HSC VCN to a similar or greater extent with LentiBOOST in vivo. Our findings delineate an improved protocol to increase the VCN of HSCs after CD34 + cell transduction with clinically relevant LVs.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32341484</pmid><doi>10.1038/s41434-020-0150-z</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5678-8843</orcidid><orcidid>https://orcid.org/0000-0002-4973-1520</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2020-12, Vol.27 (12), p.545-556
issn 0969-7128
1476-5462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7606410
source SpringerLink Journals
subjects 13/100
13/31
13/44
38/44
38/77
42
631/1647/2300/1850
631/61/2300/1850
64
64/60
Autografts
Biomedical and Life Sciences
Biomedicine
Care and treatment
CD34 antigen
Cell Biology
Copy number
Cyclosporins
Expression vectors
Gene Expression
Gene Therapy
Health aspects
Hematological diseases
Hematopoietic stem cells
Human Genetics
Immunological deficiency syndromes
Lentivirus
Methods
Nanotechnology
Patient outcomes
Prostaglandin E2
Severe combined immunodeficiency
Stem cell transplantation
Stem cells
Transduction
Transplantation
Xenografts
title Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A03%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20lentiviral%20vector%20transduction%20of%20hematopoietic%20stem%20cells%20for%20gene%20therapy&rft.jtitle=Gene%20therapy&rft.au=Jang,%20Yoonjeong&rft.date=2020-12-01&rft.volume=27&rft.issue=12&rft.spage=545&rft.epage=556&rft.pages=545-556&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/s41434-020-0150-z&rft_dat=%3Cgale_pubme%3EA649635850%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2473197135&rft_id=info:pmid/32341484&rft_galeid=A649635850&rfr_iscdi=true