Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed
Plant disease is one of the most important causes of crop losses worldwide. The effective control of plant disease is related to food security. Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum leads to serious yield losses in rapeseed ( Brassica napus ) production. Hypovirulent strain D...
Gespeichert in:
Veröffentlicht in: | NPJ biofilms and microbiomes 2020-10, Vol.6 (1), p.45, Article 45 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 45 |
container_title | NPJ biofilms and microbiomes |
container_volume | 6 |
creator | Qu, Zheng Zhao, Huizhang Zhang, Hongxiang Wang, Qianqian Yao, Yao Cheng, Jiasen Lin, Yang Xie, Jiatao Fu, Yanping Jiang, Daohong |
description | Plant disease is one of the most important causes of crop losses worldwide. The effective control of plant disease is related to food security.
Sclerotinia
stem rot (SSR) caused by
Sclerotinia sclerotiorum
leads to serious yield losses in rapeseed (
Brassica napus
) production. Hypovirulent strain DT-8 of
S. sclerotiorum
, infected with Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), has the potential to control SSR. In this study, we found rapeseed bio-priming with strain DT-8 could significantly decrease the disease severity of SSR and increase yield in the field. After bio-priming, strain DT-8 could be detected on the aerial part of the rapeseed plant. By 16S rRNA gene and internal transcribed spacer (ITS) sequencing technique, the microbiome on different parts of the SSR lesion on bioprimed and non-bioprimed rapeseed stem was determined. The results indicated that SSR and bio-priming treatment could influence the structure and composition of fungal and bacterial communities. Bio-priming treatment could reduce the total abundance of possible plant pathogens and enhance the connectivity and robustness of the interaction network at the genus level. This might be one of the mechanisms that rapeseed bioprimed with strain DT-8 had excellent tolerance on SSR. It might be another possible mechanism of biocontrol and will provide a theoretical guide for agricultural practical production. |
doi_str_mv | 10.1038/s41522-020-00157-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7603479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456432452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-d14d1ce2877f94ef945b77dc2f76d4b1cea1d48f76e73f5b57f7a68b2ce87ec13</originalsourceid><addsrcrecordid>eNp9kctu1TAQhiMEolXpC7BAltiwCfga52yQoOImVWIDa8txJolLjh1sp9V5Ax6bOaSUwoKFr_PNb8_8VfWU0ZeMivZVlkxxXlNOa0qZ0rV6UJ1yqlStKG0f3tufVOc5X9EjJbVo1ePqRAjG9Y7T0-rHWx_rJfm9DyO58WUilkyHJV77tM4QClmmQ4mLLVMcIXhHhjWMayYQJhscZFImIC6GAK74GIgNPcklQRhRKg5k712Knbcz8aFAshsVoNzE9A3vSLILZID-SfVosHOG89v1rPr6_t2Xi4_15ecPny7eXNZOalnqnsmeOeCt1sNOAg7Vad07Puimlx2GLOtliyfQYlCd0oO2TdtxB60Gx8RZ9XrTXdZuD73DGpOdzbEFNh1MtN78HQl-MmO8NrqhQuodCry4FUjx-wq5mL3PDubZBohrNlyqRgqcOaLP_0Gv4poCloeURv9a1Wik-EZhp3JOMNx9hlFz9NpsXhv02vzy2ihMena_jLuU384iIDYgYyiMkP68_R_Zny1yuT8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471528567</pqid></control><display><type>article</type><title>Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><creator>Qu, Zheng ; Zhao, Huizhang ; Zhang, Hongxiang ; Wang, Qianqian ; Yao, Yao ; Cheng, Jiasen ; Lin, Yang ; Xie, Jiatao ; Fu, Yanping ; Jiang, Daohong</creator><creatorcontrib>Qu, Zheng ; Zhao, Huizhang ; Zhang, Hongxiang ; Wang, Qianqian ; Yao, Yao ; Cheng, Jiasen ; Lin, Yang ; Xie, Jiatao ; Fu, Yanping ; Jiang, Daohong</creatorcontrib><description>Plant disease is one of the most important causes of crop losses worldwide. The effective control of plant disease is related to food security.
Sclerotinia
stem rot (SSR) caused by
Sclerotinia sclerotiorum
leads to serious yield losses in rapeseed (
Brassica napus
) production. Hypovirulent strain DT-8 of
S. sclerotiorum
, infected with Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), has the potential to control SSR. In this study, we found rapeseed bio-priming with strain DT-8 could significantly decrease the disease severity of SSR and increase yield in the field. After bio-priming, strain DT-8 could be detected on the aerial part of the rapeseed plant. By 16S rRNA gene and internal transcribed spacer (ITS) sequencing technique, the microbiome on different parts of the SSR lesion on bioprimed and non-bioprimed rapeseed stem was determined. The results indicated that SSR and bio-priming treatment could influence the structure and composition of fungal and bacterial communities. Bio-priming treatment could reduce the total abundance of possible plant pathogens and enhance the connectivity and robustness of the interaction network at the genus level. This might be one of the mechanisms that rapeseed bioprimed with strain DT-8 had excellent tolerance on SSR. It might be another possible mechanism of biocontrol and will provide a theoretical guide for agricultural practical production.</description><identifier>ISSN: 2055-5008</identifier><identifier>EISSN: 2055-5008</identifier><identifier>DOI: 10.1038/s41522-020-00157-5</identifier><identifier>PMID: 33127920</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/514/2254 ; 631/326/2522 ; Ascomycota - classification ; Ascomycota - genetics ; Ascomycota - pathogenicity ; Bacteria - classification ; Bacteria - genetics ; Bacteria - isolation & purification ; Biological control ; Biomedical and Life Sciences ; Brassica napus ; Brassica napus - growth & development ; Brassica napus - microbiology ; Crops, Agricultural - growth & development ; Crops, Agricultural - microbiology ; DNA Viruses - genetics ; DNA, Bacterial - genetics ; DNA, Fungal - genetics ; DNA, Ribosomal - genetics ; Food security ; Life Sciences ; Medical Microbiology ; Microbial Ecology ; Microbial Genetics and Genomics ; Microbial Interactions ; Microbiology ; Microbiomes ; Phylogeny ; Phytopathogenic fungi ; Plant diseases ; Plant Diseases - microbiology ; Plant Diseases - prevention & control ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Sclerotinia sclerotiorum ; Sequence Analysis, DNA ; Stem rot</subject><ispartof>NPJ biofilms and microbiomes, 2020-10, Vol.6 (1), p.45, Article 45</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-d14d1ce2877f94ef945b77dc2f76d4b1cea1d48f76e73f5b57f7a68b2ce87ec13</citedby><cites>FETCH-LOGICAL-c474t-d14d1ce2877f94ef945b77dc2f76d4b1cea1d48f76e73f5b57f7a68b2ce87ec13</cites><orcidid>0000-0002-3748-9933 ; 0000-0002-3862-7461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603479/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603479/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33127920$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Qu, Zheng</creatorcontrib><creatorcontrib>Zhao, Huizhang</creatorcontrib><creatorcontrib>Zhang, Hongxiang</creatorcontrib><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Cheng, Jiasen</creatorcontrib><creatorcontrib>Lin, Yang</creatorcontrib><creatorcontrib>Xie, Jiatao</creatorcontrib><creatorcontrib>Fu, Yanping</creatorcontrib><creatorcontrib>Jiang, Daohong</creatorcontrib><title>Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed</title><title>NPJ biofilms and microbiomes</title><addtitle>npj Biofilms Microbiomes</addtitle><addtitle>NPJ Biofilms Microbiomes</addtitle><description>Plant disease is one of the most important causes of crop losses worldwide. The effective control of plant disease is related to food security.
Sclerotinia
stem rot (SSR) caused by
Sclerotinia sclerotiorum
leads to serious yield losses in rapeseed (
Brassica napus
) production. Hypovirulent strain DT-8 of
S. sclerotiorum
, infected with Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), has the potential to control SSR. In this study, we found rapeseed bio-priming with strain DT-8 could significantly decrease the disease severity of SSR and increase yield in the field. After bio-priming, strain DT-8 could be detected on the aerial part of the rapeseed plant. By 16S rRNA gene and internal transcribed spacer (ITS) sequencing technique, the microbiome on different parts of the SSR lesion on bioprimed and non-bioprimed rapeseed stem was determined. The results indicated that SSR and bio-priming treatment could influence the structure and composition of fungal and bacterial communities. Bio-priming treatment could reduce the total abundance of possible plant pathogens and enhance the connectivity and robustness of the interaction network at the genus level. This might be one of the mechanisms that rapeseed bioprimed with strain DT-8 had excellent tolerance on SSR. It might be another possible mechanism of biocontrol and will provide a theoretical guide for agricultural practical production.</description><subject>631/1647/514/2254</subject><subject>631/326/2522</subject><subject>Ascomycota - classification</subject><subject>Ascomycota - genetics</subject><subject>Ascomycota - pathogenicity</subject><subject>Bacteria - classification</subject><subject>Bacteria - genetics</subject><subject>Bacteria - isolation & purification</subject><subject>Biological control</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica napus</subject><subject>Brassica napus - growth & development</subject><subject>Brassica napus - microbiology</subject><subject>Crops, Agricultural - growth & development</subject><subject>Crops, Agricultural - microbiology</subject><subject>DNA Viruses - genetics</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Fungal - genetics</subject><subject>DNA, Ribosomal - genetics</subject><subject>Food security</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbial Ecology</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbial Interactions</subject><subject>Microbiology</subject><subject>Microbiomes</subject><subject>Phylogeny</subject><subject>Phytopathogenic fungi</subject><subject>Plant diseases</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Diseases - prevention & control</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Sclerotinia sclerotiorum</subject><subject>Sequence Analysis, DNA</subject><subject>Stem rot</subject><issn>2055-5008</issn><issn>2055-5008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctu1TAQhiMEolXpC7BAltiwCfga52yQoOImVWIDa8txJolLjh1sp9V5Ax6bOaSUwoKFr_PNb8_8VfWU0ZeMivZVlkxxXlNOa0qZ0rV6UJ1yqlStKG0f3tufVOc5X9EjJbVo1ePqRAjG9Y7T0-rHWx_rJfm9DyO58WUilkyHJV77tM4QClmmQ4mLLVMcIXhHhjWMayYQJhscZFImIC6GAK74GIgNPcklQRhRKg5k712Knbcz8aFAshsVoNzE9A3vSLILZID-SfVosHOG89v1rPr6_t2Xi4_15ecPny7eXNZOalnqnsmeOeCt1sNOAg7Vad07Puimlx2GLOtliyfQYlCd0oO2TdtxB60Gx8RZ9XrTXdZuD73DGpOdzbEFNh1MtN78HQl-MmO8NrqhQuodCry4FUjx-wq5mL3PDubZBohrNlyqRgqcOaLP_0Gv4poCloeURv9a1Wik-EZhp3JOMNx9hlFz9NpsXhv02vzy2ihMena_jLuU384iIDYgYyiMkP68_R_Zny1yuT8</recordid><startdate>20201030</startdate><enddate>20201030</enddate><creator>Qu, Zheng</creator><creator>Zhao, Huizhang</creator><creator>Zhang, Hongxiang</creator><creator>Wang, Qianqian</creator><creator>Yao, Yao</creator><creator>Cheng, Jiasen</creator><creator>Lin, Yang</creator><creator>Xie, Jiatao</creator><creator>Fu, Yanping</creator><creator>Jiang, Daohong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3748-9933</orcidid><orcidid>https://orcid.org/0000-0002-3862-7461</orcidid></search><sort><creationdate>20201030</creationdate><title>Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed</title><author>Qu, Zheng ; Zhao, Huizhang ; Zhang, Hongxiang ; Wang, Qianqian ; Yao, Yao ; Cheng, Jiasen ; Lin, Yang ; Xie, Jiatao ; Fu, Yanping ; Jiang, Daohong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-d14d1ce2877f94ef945b77dc2f76d4b1cea1d48f76e73f5b57f7a68b2ce87ec13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/514/2254</topic><topic>631/326/2522</topic><topic>Ascomycota - classification</topic><topic>Ascomycota - genetics</topic><topic>Ascomycota - pathogenicity</topic><topic>Bacteria - classification</topic><topic>Bacteria - genetics</topic><topic>Bacteria - isolation & purification</topic><topic>Biological control</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica napus</topic><topic>Brassica napus - growth & development</topic><topic>Brassica napus - microbiology</topic><topic>Crops, Agricultural - growth & development</topic><topic>Crops, Agricultural - microbiology</topic><topic>DNA Viruses - genetics</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Fungal - genetics</topic><topic>DNA, Ribosomal - genetics</topic><topic>Food security</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbial Ecology</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbial Interactions</topic><topic>Microbiology</topic><topic>Microbiomes</topic><topic>Phylogeny</topic><topic>Phytopathogenic fungi</topic><topic>Plant diseases</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Diseases - prevention & control</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Sclerotinia sclerotiorum</topic><topic>Sequence Analysis, DNA</topic><topic>Stem rot</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qu, Zheng</creatorcontrib><creatorcontrib>Zhao, Huizhang</creatorcontrib><creatorcontrib>Zhang, Hongxiang</creatorcontrib><creatorcontrib>Wang, Qianqian</creatorcontrib><creatorcontrib>Yao, Yao</creatorcontrib><creatorcontrib>Cheng, Jiasen</creatorcontrib><creatorcontrib>Lin, Yang</creatorcontrib><creatorcontrib>Xie, Jiatao</creatorcontrib><creatorcontrib>Fu, Yanping</creatorcontrib><creatorcontrib>Jiang, Daohong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>NPJ biofilms and microbiomes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qu, Zheng</au><au>Zhao, Huizhang</au><au>Zhang, Hongxiang</au><au>Wang, Qianqian</au><au>Yao, Yao</au><au>Cheng, Jiasen</au><au>Lin, Yang</au><au>Xie, Jiatao</au><au>Fu, Yanping</au><au>Jiang, Daohong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed</atitle><jtitle>NPJ biofilms and microbiomes</jtitle><stitle>npj Biofilms Microbiomes</stitle><addtitle>NPJ Biofilms Microbiomes</addtitle><date>2020-10-30</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><spage>45</spage><pages>45-</pages><artnum>45</artnum><issn>2055-5008</issn><eissn>2055-5008</eissn><abstract>Plant disease is one of the most important causes of crop losses worldwide. The effective control of plant disease is related to food security.
Sclerotinia
stem rot (SSR) caused by
Sclerotinia sclerotiorum
leads to serious yield losses in rapeseed (
Brassica napus
) production. Hypovirulent strain DT-8 of
S. sclerotiorum
, infected with Sclerotinia sclerotiorum hypovirulence-associated DNA virus 1 (SsHADV-1), has the potential to control SSR. In this study, we found rapeseed bio-priming with strain DT-8 could significantly decrease the disease severity of SSR and increase yield in the field. After bio-priming, strain DT-8 could be detected on the aerial part of the rapeseed plant. By 16S rRNA gene and internal transcribed spacer (ITS) sequencing technique, the microbiome on different parts of the SSR lesion on bioprimed and non-bioprimed rapeseed stem was determined. The results indicated that SSR and bio-priming treatment could influence the structure and composition of fungal and bacterial communities. Bio-priming treatment could reduce the total abundance of possible plant pathogens and enhance the connectivity and robustness of the interaction network at the genus level. This might be one of the mechanisms that rapeseed bioprimed with strain DT-8 had excellent tolerance on SSR. It might be another possible mechanism of biocontrol and will provide a theoretical guide for agricultural practical production.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33127920</pmid><doi>10.1038/s41522-020-00157-5</doi><orcidid>https://orcid.org/0000-0002-3748-9933</orcidid><orcidid>https://orcid.org/0000-0002-3862-7461</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2055-5008 |
ispartof | NPJ biofilms and microbiomes, 2020-10, Vol.6 (1), p.45, Article 45 |
issn | 2055-5008 2055-5008 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7603479 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; PubMed Central |
subjects | 631/1647/514/2254 631/326/2522 Ascomycota - classification Ascomycota - genetics Ascomycota - pathogenicity Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Biological control Biomedical and Life Sciences Brassica napus Brassica napus - growth & development Brassica napus - microbiology Crops, Agricultural - growth & development Crops, Agricultural - microbiology DNA Viruses - genetics DNA, Bacterial - genetics DNA, Fungal - genetics DNA, Ribosomal - genetics Food security Life Sciences Medical Microbiology Microbial Ecology Microbial Genetics and Genomics Microbial Interactions Microbiology Microbiomes Phylogeny Phytopathogenic fungi Plant diseases Plant Diseases - microbiology Plant Diseases - prevention & control RNA, Ribosomal, 16S - genetics rRNA 16S Sclerotinia sclerotiorum Sequence Analysis, DNA Stem rot |
title | Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bio-priming%20with%20a%20hypovirulent%20phytopathogenic%20fungus%20enhances%20the%20connection%20and%20strength%20of%20microbial%20interaction%20network%20in%20rapeseed&rft.jtitle=NPJ%20biofilms%20and%20microbiomes&rft.au=Qu,%20Zheng&rft.date=2020-10-30&rft.volume=6&rft.issue=1&rft.spage=45&rft.pages=45-&rft.artnum=45&rft.issn=2055-5008&rft.eissn=2055-5008&rft_id=info:doi/10.1038/s41522-020-00157-5&rft_dat=%3Cproquest_pubme%3E2456432452%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471528567&rft_id=info:pmid/33127920&rfr_iscdi=true |