Enhanced Bioactivity of Micropatterned Hydroxyapatite Embedded Poly(L-lactic) Acid for a Load-Bearing Implant

Poly(L-lactic) acid (PLLA) is among the most promising polymers for bone fixation, repair, and tissue engineering due to its biodegradability and relatively good mechanical strength. Despite these beneficial characteristics, its poor bioactivity often requires incorporation of bioactive ceramic mate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2020-10, Vol.12 (10), p.2390
Hauptverfasser: Kim, Sae-Mi, Kang, In-Gu, Cheon, Kwang-Hee, Jang, Tae-Sik, Kim, Hyoun-Ee, Jung, Hyun-Do, Kang, Min-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 2390
container_title Polymers
container_volume 12
creator Kim, Sae-Mi
Kang, In-Gu
Cheon, Kwang-Hee
Jang, Tae-Sik
Kim, Hyoun-Ee
Jung, Hyun-Do
Kang, Min-Ho
description Poly(L-lactic) acid (PLLA) is among the most promising polymers for bone fixation, repair, and tissue engineering due to its biodegradability and relatively good mechanical strength. Despite these beneficial characteristics, its poor bioactivity often requires incorporation of bioactive ceramic materials. A bioresorbable composite made of PLLA and hydroxyapatite (HA) may improve biocompatibility but typically causes deterioration in mechanical properties, and bioactive coatings inevitably carry a risk of coating delamination. Therefore, in this study, we embedded micropatterned HA on the surface of PLLA to improve bioactivity while eliminating the risk of HA delamination. An HA pattern was successfully embedded in a PLLA matrix without degeneration of the matrix’s mechanical properties, thanks to a transfer technique involving conversion of Mg to HA. Furthermore, patterned HA/PLLA’s biological response outperformed that of pure PLLA. These results confirm patterned HA/PLLA as a candidate for wide acceptance in biodegradable load-bearing implant applications.
doi_str_mv 10.3390/polym12102390
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7603062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550256376</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-7c695999d2ce22cf17230c17ebc9729ff7a43b3a15fd9e9098caee1ebf9821fd3</originalsourceid><addsrcrecordid>eNpdUUtLxDAQDqKoqEfvAS96qObRNpuLoLI-YEUPeg5pMtFI29Q0u9h_bxZF1LnM65uPb2YQOqTklHNJzobQTh1llLCcbaBdRgQvSl6TzV_xDjoYxzeSrazqmopttMM5mREhxC7q5v2r7g1YfOmDNsmvfJpwcPjemxgGnRLEPndvJxvDx6RzxSfA864Ba3P9MSs4XhTtetSc4AvjLXYhYo0XQdviEnT0_Qu-64ZW92kfbTndjnDw7ffQ8_X86eq2WDzc3F1dLAqTBadCmFpWUkrLDDBmHBWME0MFNEYKJp0TuuQN17RyVoIkcmY0AIXGyRmjzvI9dP7FOyybDqyBPkXdqiH6TsdJBe3V307vX9VLWClRE05qlgmOvwlieF_CmFTnRwNtXgLCclSsrJiclVysoUf_oG9hGfu8nmJVRVhVc1FnVPGFylcdxwjuRwwlav1L9eeX_BOPHJI2</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550256376</pqid></control><display><type>article</type><title>Enhanced Bioactivity of Micropatterned Hydroxyapatite Embedded Poly(L-lactic) Acid for a Load-Bearing Implant</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Kim, Sae-Mi ; Kang, In-Gu ; Cheon, Kwang-Hee ; Jang, Tae-Sik ; Kim, Hyoun-Ee ; Jung, Hyun-Do ; Kang, Min-Ho</creator><creatorcontrib>Kim, Sae-Mi ; Kang, In-Gu ; Cheon, Kwang-Hee ; Jang, Tae-Sik ; Kim, Hyoun-Ee ; Jung, Hyun-Do ; Kang, Min-Ho</creatorcontrib><description>Poly(L-lactic) acid (PLLA) is among the most promising polymers for bone fixation, repair, and tissue engineering due to its biodegradability and relatively good mechanical strength. Despite these beneficial characteristics, its poor bioactivity often requires incorporation of bioactive ceramic materials. A bioresorbable composite made of PLLA and hydroxyapatite (HA) may improve biocompatibility but typically causes deterioration in mechanical properties, and bioactive coatings inevitably carry a risk of coating delamination. Therefore, in this study, we embedded micropatterned HA on the surface of PLLA to improve bioactivity while eliminating the risk of HA delamination. An HA pattern was successfully embedded in a PLLA matrix without degeneration of the matrix’s mechanical properties, thanks to a transfer technique involving conversion of Mg to HA. Furthermore, patterned HA/PLLA’s biological response outperformed that of pure PLLA. These results confirm patterned HA/PLLA as a candidate for wide acceptance in biodegradable load-bearing implant applications.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym12102390</identifier><identifier>PMID: 33080777</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biocompatibility ; Biodegradability ; Biological activity ; Biomedical materials ; Cell growth ; Ceramic glazes ; Contact angle ; Degeneration ; Delamination ; Hydroxyapatite ; Mechanical properties ; Micropatterning ; Morphology ; Polylactic acid ; Protective coatings ; Scanning electron microscopy ; Silicon wafers ; Tensile strength ; Tension tests ; Tissue engineering</subject><ispartof>Polymers, 2020-10, Vol.12 (10), p.2390</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-7c695999d2ce22cf17230c17ebc9729ff7a43b3a15fd9e9098caee1ebf9821fd3</citedby><cites>FETCH-LOGICAL-c436t-7c695999d2ce22cf17230c17ebc9729ff7a43b3a15fd9e9098caee1ebf9821fd3</cites><orcidid>0000-0001-8632-7431</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603062/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603062/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Kim, Sae-Mi</creatorcontrib><creatorcontrib>Kang, In-Gu</creatorcontrib><creatorcontrib>Cheon, Kwang-Hee</creatorcontrib><creatorcontrib>Jang, Tae-Sik</creatorcontrib><creatorcontrib>Kim, Hyoun-Ee</creatorcontrib><creatorcontrib>Jung, Hyun-Do</creatorcontrib><creatorcontrib>Kang, Min-Ho</creatorcontrib><title>Enhanced Bioactivity of Micropatterned Hydroxyapatite Embedded Poly(L-lactic) Acid for a Load-Bearing Implant</title><title>Polymers</title><description>Poly(L-lactic) acid (PLLA) is among the most promising polymers for bone fixation, repair, and tissue engineering due to its biodegradability and relatively good mechanical strength. Despite these beneficial characteristics, its poor bioactivity often requires incorporation of bioactive ceramic materials. A bioresorbable composite made of PLLA and hydroxyapatite (HA) may improve biocompatibility but typically causes deterioration in mechanical properties, and bioactive coatings inevitably carry a risk of coating delamination. Therefore, in this study, we embedded micropatterned HA on the surface of PLLA to improve bioactivity while eliminating the risk of HA delamination. An HA pattern was successfully embedded in a PLLA matrix without degeneration of the matrix’s mechanical properties, thanks to a transfer technique involving conversion of Mg to HA. Furthermore, patterned HA/PLLA’s biological response outperformed that of pure PLLA. These results confirm patterned HA/PLLA as a candidate for wide acceptance in biodegradable load-bearing implant applications.</description><subject>Biocompatibility</subject><subject>Biodegradability</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Cell growth</subject><subject>Ceramic glazes</subject><subject>Contact angle</subject><subject>Degeneration</subject><subject>Delamination</subject><subject>Hydroxyapatite</subject><subject>Mechanical properties</subject><subject>Micropatterning</subject><subject>Morphology</subject><subject>Polylactic acid</subject><subject>Protective coatings</subject><subject>Scanning electron microscopy</subject><subject>Silicon wafers</subject><subject>Tensile strength</subject><subject>Tension tests</subject><subject>Tissue engineering</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUUtLxDAQDqKoqEfvAS96qObRNpuLoLI-YEUPeg5pMtFI29Q0u9h_bxZF1LnM65uPb2YQOqTklHNJzobQTh1llLCcbaBdRgQvSl6TzV_xDjoYxzeSrazqmopttMM5mREhxC7q5v2r7g1YfOmDNsmvfJpwcPjemxgGnRLEPndvJxvDx6RzxSfA864Ba3P9MSs4XhTtetSc4AvjLXYhYo0XQdviEnT0_Qu-64ZW92kfbTndjnDw7ffQ8_X86eq2WDzc3F1dLAqTBadCmFpWUkrLDDBmHBWME0MFNEYKJp0TuuQN17RyVoIkcmY0AIXGyRmjzvI9dP7FOyybDqyBPkXdqiH6TsdJBe3V307vX9VLWClRE05qlgmOvwlieF_CmFTnRwNtXgLCclSsrJiclVysoUf_oG9hGfu8nmJVRVhVc1FnVPGFylcdxwjuRwwlav1L9eeX_BOPHJI2</recordid><startdate>20201017</startdate><enddate>20201017</enddate><creator>Kim, Sae-Mi</creator><creator>Kang, In-Gu</creator><creator>Cheon, Kwang-Hee</creator><creator>Jang, Tae-Sik</creator><creator>Kim, Hyoun-Ee</creator><creator>Jung, Hyun-Do</creator><creator>Kang, Min-Ho</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8632-7431</orcidid></search><sort><creationdate>20201017</creationdate><title>Enhanced Bioactivity of Micropatterned Hydroxyapatite Embedded Poly(L-lactic) Acid for a Load-Bearing Implant</title><author>Kim, Sae-Mi ; Kang, In-Gu ; Cheon, Kwang-Hee ; Jang, Tae-Sik ; Kim, Hyoun-Ee ; Jung, Hyun-Do ; Kang, Min-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-7c695999d2ce22cf17230c17ebc9729ff7a43b3a15fd9e9098caee1ebf9821fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biocompatibility</topic><topic>Biodegradability</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Cell growth</topic><topic>Ceramic glazes</topic><topic>Contact angle</topic><topic>Degeneration</topic><topic>Delamination</topic><topic>Hydroxyapatite</topic><topic>Mechanical properties</topic><topic>Micropatterning</topic><topic>Morphology</topic><topic>Polylactic acid</topic><topic>Protective coatings</topic><topic>Scanning electron microscopy</topic><topic>Silicon wafers</topic><topic>Tensile strength</topic><topic>Tension tests</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Sae-Mi</creatorcontrib><creatorcontrib>Kang, In-Gu</creatorcontrib><creatorcontrib>Cheon, Kwang-Hee</creatorcontrib><creatorcontrib>Jang, Tae-Sik</creatorcontrib><creatorcontrib>Kim, Hyoun-Ee</creatorcontrib><creatorcontrib>Jung, Hyun-Do</creatorcontrib><creatorcontrib>Kang, Min-Ho</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Sae-Mi</au><au>Kang, In-Gu</au><au>Cheon, Kwang-Hee</au><au>Jang, Tae-Sik</au><au>Kim, Hyoun-Ee</au><au>Jung, Hyun-Do</au><au>Kang, Min-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Bioactivity of Micropatterned Hydroxyapatite Embedded Poly(L-lactic) Acid for a Load-Bearing Implant</atitle><jtitle>Polymers</jtitle><date>2020-10-17</date><risdate>2020</risdate><volume>12</volume><issue>10</issue><spage>2390</spage><pages>2390-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Poly(L-lactic) acid (PLLA) is among the most promising polymers for bone fixation, repair, and tissue engineering due to its biodegradability and relatively good mechanical strength. Despite these beneficial characteristics, its poor bioactivity often requires incorporation of bioactive ceramic materials. A bioresorbable composite made of PLLA and hydroxyapatite (HA) may improve biocompatibility but typically causes deterioration in mechanical properties, and bioactive coatings inevitably carry a risk of coating delamination. Therefore, in this study, we embedded micropatterned HA on the surface of PLLA to improve bioactivity while eliminating the risk of HA delamination. An HA pattern was successfully embedded in a PLLA matrix without degeneration of the matrix’s mechanical properties, thanks to a transfer technique involving conversion of Mg to HA. Furthermore, patterned HA/PLLA’s biological response outperformed that of pure PLLA. These results confirm patterned HA/PLLA as a candidate for wide acceptance in biodegradable load-bearing implant applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33080777</pmid><doi>10.3390/polym12102390</doi><orcidid>https://orcid.org/0000-0001-8632-7431</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2020-10, Vol.12 (10), p.2390
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7603062
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; PubMed Central Open Access
subjects Biocompatibility
Biodegradability
Biological activity
Biomedical materials
Cell growth
Ceramic glazes
Contact angle
Degeneration
Delamination
Hydroxyapatite
Mechanical properties
Micropatterning
Morphology
Polylactic acid
Protective coatings
Scanning electron microscopy
Silicon wafers
Tensile strength
Tension tests
Tissue engineering
title Enhanced Bioactivity of Micropatterned Hydroxyapatite Embedded Poly(L-lactic) Acid for a Load-Bearing Implant
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A26%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Bioactivity%20of%20Micropatterned%20Hydroxyapatite%20Embedded%20Poly(L-lactic)%20Acid%20for%20a%20Load-Bearing%20Implant&rft.jtitle=Polymers&rft.au=Kim,%20Sae-Mi&rft.date=2020-10-17&rft.volume=12&rft.issue=10&rft.spage=2390&rft.pages=2390-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym12102390&rft_dat=%3Cproquest_pubme%3E2550256376%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2550256376&rft_id=info:pmid/33080777&rfr_iscdi=true