Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Films

Cu2ZnSnS4 (CZTS) is an economically and environmentally friendly alternative to other toxic and expensive materials used for photovoltaics, however, the variation in the composition during synthesis is often followed by the occurrence of the secondary binary and ternary crystalline phases. These pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-10, Vol.13 (20), p.4624
Hauptverfasser: Sava, Florinel, Diagne, Ousmane, Galca, Aurelian-Catalin, Simandan, Iosif-Daniel, Matei, Elena, Burdusel, Mihail, Becherescu, Nicu, Becherescu, Virginia, Mihai, Claudia, Velea, Alin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page 4624
container_title Materials
container_volume 13
creator Sava, Florinel
Diagne, Ousmane
Galca, Aurelian-Catalin
Simandan, Iosif-Daniel
Matei, Elena
Burdusel, Mihail
Becherescu, Nicu
Becherescu, Virginia
Mihai, Claudia
Velea, Alin
description Cu2ZnSnS4 (CZTS) is an economically and environmentally friendly alternative to other toxic and expensive materials used for photovoltaics, however, the variation in the composition during synthesis is often followed by the occurrence of the secondary binary and ternary crystalline phases. These phases produce changes in the optical absorption edge important in cell efficiency. We explore here the secondary phases that emerge in a combinatorial Cu2S–ZnS–SnS2 thin films library. Thin films with a composition gradient were prepared by simultaneous magnetron sputtering from three binary chalcogenide targets (Cu2S, SnS2 and ZnS). Then, the samples were crystallized by sulfurization annealing at 450 °C under argon flow. Their composition was measured by energy dispersive X-ray spectroscopy (EDX), whereas the structural and optical properties were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and optical transmission measurements. As already known, we found that annealing in a sulfur environment is beneficial, increasing the crystallinity of the samples. Raman spectroscopy revealed the presence of CZTS in all the samples from the library. Secondary crystalline phases such as SnS2, ZnS and Cu–S are also formed in the samples depending on their proximity to the binary chalcogenide targets. The formation of ZnS or Cu–S strongly correlates with the Zn/Sn and Cu/Zn ratio of the total sample composition. The presence of these phases produces a variation in the bandgap between 1.41 eV and 1.68 eV. This study reveals that as we go further away from CZTS in the composition space, in the quasi-ternary Cu2S–ZnS–SnS2 diagram, secondary crystalline phases arise and increase in number, whereas the bandgap takes values outside the optimum range for photovoltaic applications.
doi_str_mv 10.3390/ma13204624
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7603050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548731055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-cbd41fd02cdcbed9851422eef11c7894e3443ab211877319f63bce353de8a5d93</originalsourceid><addsrcrecordid>eNpdkdFKHTEQhkNRqqg3fYKF3oiwNclk9yQ3QjlUKwgKqzfehGx2tieSTU6T3YJ3fYe-oU_SiNLazsXMMPPx8w9DyAdGPwEoejoZBpyKlot3ZJ8p1dZMCbHzpt8jRzk_0BIATHL1nuwBUMmg5fskdmhjGEx6rNbpMc_GexewutmYjLm6DKNfMFisYqiut7Ozxlc3KW4xza7sXZmOY93N0dmNixPOydlqvfDu6eev-_Ccu9Dx6nZTyHPnp3xIdkfjMx691gNyd_7ldv21vrq-uFx_vqotSJhr2w-CjQPldrA9Dko2THCOODJmV1IJBCHA9JwxuVoBU2MLvUVoYEBpmkHBATl70d0u_YSDxTAn4_U2uancqqNx-t9NcBv9Lf7Qq5YCbWgROH4VSPH7gnnWk8sWvTcB45I1Fw1XkkngBf34H_oQlxTKeZo3QhZ_tGkKdfJC2RRzTjj-McOofn6l_vtK-A0DjZHq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548731055</pqid></control><display><type>article</type><title>Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Films</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sava, Florinel ; Diagne, Ousmane ; Galca, Aurelian-Catalin ; Simandan, Iosif-Daniel ; Matei, Elena ; Burdusel, Mihail ; Becherescu, Nicu ; Becherescu, Virginia ; Mihai, Claudia ; Velea, Alin</creator><creatorcontrib>Sava, Florinel ; Diagne, Ousmane ; Galca, Aurelian-Catalin ; Simandan, Iosif-Daniel ; Matei, Elena ; Burdusel, Mihail ; Becherescu, Nicu ; Becherescu, Virginia ; Mihai, Claudia ; Velea, Alin</creatorcontrib><description>Cu2ZnSnS4 (CZTS) is an economically and environmentally friendly alternative to other toxic and expensive materials used for photovoltaics, however, the variation in the composition during synthesis is often followed by the occurrence of the secondary binary and ternary crystalline phases. These phases produce changes in the optical absorption edge important in cell efficiency. We explore here the secondary phases that emerge in a combinatorial Cu2S–ZnS–SnS2 thin films library. Thin films with a composition gradient were prepared by simultaneous magnetron sputtering from three binary chalcogenide targets (Cu2S, SnS2 and ZnS). Then, the samples were crystallized by sulfurization annealing at 450 °C under argon flow. Their composition was measured by energy dispersive X-ray spectroscopy (EDX), whereas the structural and optical properties were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and optical transmission measurements. As already known, we found that annealing in a sulfur environment is beneficial, increasing the crystallinity of the samples. Raman spectroscopy revealed the presence of CZTS in all the samples from the library. Secondary crystalline phases such as SnS2, ZnS and Cu–S are also formed in the samples depending on their proximity to the binary chalcogenide targets. The formation of ZnS or Cu–S strongly correlates with the Zn/Sn and Cu/Zn ratio of the total sample composition. The presence of these phases produces a variation in the bandgap between 1.41 eV and 1.68 eV. This study reveals that as we go further away from CZTS in the composition space, in the quasi-ternary Cu2S–ZnS–SnS2 diagram, secondary crystalline phases arise and increase in number, whereas the bandgap takes values outside the optimum range for photovoltaic applications.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13204624</identifier><identifier>PMID: 33081362</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Annealing ; Argon ; Chalcogenides ; Combinatorial analysis ; Composition ; Copper ; Copper sulfides ; Crystal structure ; Crystallinity ; Crystallization ; Energy gap ; Lasers ; Libraries ; Magnetron sputtering ; Optical properties ; Phases ; Photovoltaic cells ; Raman spectroscopy ; Software ; Spectroscopic analysis ; Spectrum analysis ; Sulfur content ; Sulfurization ; Ternary systems ; Thin films ; Tin disulfide ; X-ray spectroscopy ; X-rays ; Zinc sulfide</subject><ispartof>Materials, 2020-10, Vol.13 (20), p.4624</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-cbd41fd02cdcbed9851422eef11c7894e3443ab211877319f63bce353de8a5d93</citedby><cites>FETCH-LOGICAL-c383t-cbd41fd02cdcbed9851422eef11c7894e3443ab211877319f63bce353de8a5d93</cites><orcidid>0000-0002-4053-0650 ; 0000-0002-8387-2562 ; 0000-0001-6851-2991 ; 0000-0002-1914-4210</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603050/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7603050/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Sava, Florinel</creatorcontrib><creatorcontrib>Diagne, Ousmane</creatorcontrib><creatorcontrib>Galca, Aurelian-Catalin</creatorcontrib><creatorcontrib>Simandan, Iosif-Daniel</creatorcontrib><creatorcontrib>Matei, Elena</creatorcontrib><creatorcontrib>Burdusel, Mihail</creatorcontrib><creatorcontrib>Becherescu, Nicu</creatorcontrib><creatorcontrib>Becherescu, Virginia</creatorcontrib><creatorcontrib>Mihai, Claudia</creatorcontrib><creatorcontrib>Velea, Alin</creatorcontrib><title>Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Films</title><title>Materials</title><description>Cu2ZnSnS4 (CZTS) is an economically and environmentally friendly alternative to other toxic and expensive materials used for photovoltaics, however, the variation in the composition during synthesis is often followed by the occurrence of the secondary binary and ternary crystalline phases. These phases produce changes in the optical absorption edge important in cell efficiency. We explore here the secondary phases that emerge in a combinatorial Cu2S–ZnS–SnS2 thin films library. Thin films with a composition gradient were prepared by simultaneous magnetron sputtering from three binary chalcogenide targets (Cu2S, SnS2 and ZnS). Then, the samples were crystallized by sulfurization annealing at 450 °C under argon flow. Their composition was measured by energy dispersive X-ray spectroscopy (EDX), whereas the structural and optical properties were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and optical transmission measurements. As already known, we found that annealing in a sulfur environment is beneficial, increasing the crystallinity of the samples. Raman spectroscopy revealed the presence of CZTS in all the samples from the library. Secondary crystalline phases such as SnS2, ZnS and Cu–S are also formed in the samples depending on their proximity to the binary chalcogenide targets. The formation of ZnS or Cu–S strongly correlates with the Zn/Sn and Cu/Zn ratio of the total sample composition. The presence of these phases produces a variation in the bandgap between 1.41 eV and 1.68 eV. This study reveals that as we go further away from CZTS in the composition space, in the quasi-ternary Cu2S–ZnS–SnS2 diagram, secondary crystalline phases arise and increase in number, whereas the bandgap takes values outside the optimum range for photovoltaic applications.</description><subject>Annealing</subject><subject>Argon</subject><subject>Chalcogenides</subject><subject>Combinatorial analysis</subject><subject>Composition</subject><subject>Copper</subject><subject>Copper sulfides</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Crystallization</subject><subject>Energy gap</subject><subject>Lasers</subject><subject>Libraries</subject><subject>Magnetron sputtering</subject><subject>Optical properties</subject><subject>Phases</subject><subject>Photovoltaic cells</subject><subject>Raman spectroscopy</subject><subject>Software</subject><subject>Spectroscopic analysis</subject><subject>Spectrum analysis</subject><subject>Sulfur content</subject><subject>Sulfurization</subject><subject>Ternary systems</subject><subject>Thin films</subject><subject>Tin disulfide</subject><subject>X-ray spectroscopy</subject><subject>X-rays</subject><subject>Zinc sulfide</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdFKHTEQhkNRqqg3fYKF3oiwNclk9yQ3QjlUKwgKqzfehGx2tieSTU6T3YJ3fYe-oU_SiNLazsXMMPPx8w9DyAdGPwEoejoZBpyKlot3ZJ8p1dZMCbHzpt8jRzk_0BIATHL1nuwBUMmg5fskdmhjGEx6rNbpMc_GexewutmYjLm6DKNfMFisYqiut7Ozxlc3KW4xza7sXZmOY93N0dmNixPOydlqvfDu6eev-_Ccu9Dx6nZTyHPnp3xIdkfjMx691gNyd_7ldv21vrq-uFx_vqotSJhr2w-CjQPldrA9Dko2THCOODJmV1IJBCHA9JwxuVoBU2MLvUVoYEBpmkHBATl70d0u_YSDxTAn4_U2uancqqNx-t9NcBv9Lf7Qq5YCbWgROH4VSPH7gnnWk8sWvTcB45I1Fw1XkkngBf34H_oQlxTKeZo3QhZ_tGkKdfJC2RRzTjj-McOofn6l_vtK-A0DjZHq</recordid><startdate>20201016</startdate><enddate>20201016</enddate><creator>Sava, Florinel</creator><creator>Diagne, Ousmane</creator><creator>Galca, Aurelian-Catalin</creator><creator>Simandan, Iosif-Daniel</creator><creator>Matei, Elena</creator><creator>Burdusel, Mihail</creator><creator>Becherescu, Nicu</creator><creator>Becherescu, Virginia</creator><creator>Mihai, Claudia</creator><creator>Velea, Alin</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4053-0650</orcidid><orcidid>https://orcid.org/0000-0002-8387-2562</orcidid><orcidid>https://orcid.org/0000-0001-6851-2991</orcidid><orcidid>https://orcid.org/0000-0002-1914-4210</orcidid></search><sort><creationdate>20201016</creationdate><title>Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Films</title><author>Sava, Florinel ; Diagne, Ousmane ; Galca, Aurelian-Catalin ; Simandan, Iosif-Daniel ; Matei, Elena ; Burdusel, Mihail ; Becherescu, Nicu ; Becherescu, Virginia ; Mihai, Claudia ; Velea, Alin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-cbd41fd02cdcbed9851422eef11c7894e3443ab211877319f63bce353de8a5d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Annealing</topic><topic>Argon</topic><topic>Chalcogenides</topic><topic>Combinatorial analysis</topic><topic>Composition</topic><topic>Copper</topic><topic>Copper sulfides</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Crystallization</topic><topic>Energy gap</topic><topic>Lasers</topic><topic>Libraries</topic><topic>Magnetron sputtering</topic><topic>Optical properties</topic><topic>Phases</topic><topic>Photovoltaic cells</topic><topic>Raman spectroscopy</topic><topic>Software</topic><topic>Spectroscopic analysis</topic><topic>Spectrum analysis</topic><topic>Sulfur content</topic><topic>Sulfurization</topic><topic>Ternary systems</topic><topic>Thin films</topic><topic>Tin disulfide</topic><topic>X-ray spectroscopy</topic><topic>X-rays</topic><topic>Zinc sulfide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sava, Florinel</creatorcontrib><creatorcontrib>Diagne, Ousmane</creatorcontrib><creatorcontrib>Galca, Aurelian-Catalin</creatorcontrib><creatorcontrib>Simandan, Iosif-Daniel</creatorcontrib><creatorcontrib>Matei, Elena</creatorcontrib><creatorcontrib>Burdusel, Mihail</creatorcontrib><creatorcontrib>Becherescu, Nicu</creatorcontrib><creatorcontrib>Becherescu, Virginia</creatorcontrib><creatorcontrib>Mihai, Claudia</creatorcontrib><creatorcontrib>Velea, Alin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sava, Florinel</au><au>Diagne, Ousmane</au><au>Galca, Aurelian-Catalin</au><au>Simandan, Iosif-Daniel</au><au>Matei, Elena</au><au>Burdusel, Mihail</au><au>Becherescu, Nicu</au><au>Becherescu, Virginia</au><au>Mihai, Claudia</au><au>Velea, Alin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Films</atitle><jtitle>Materials</jtitle><date>2020-10-16</date><risdate>2020</risdate><volume>13</volume><issue>20</issue><spage>4624</spage><pages>4624-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Cu2ZnSnS4 (CZTS) is an economically and environmentally friendly alternative to other toxic and expensive materials used for photovoltaics, however, the variation in the composition during synthesis is often followed by the occurrence of the secondary binary and ternary crystalline phases. These phases produce changes in the optical absorption edge important in cell efficiency. We explore here the secondary phases that emerge in a combinatorial Cu2S–ZnS–SnS2 thin films library. Thin films with a composition gradient were prepared by simultaneous magnetron sputtering from three binary chalcogenide targets (Cu2S, SnS2 and ZnS). Then, the samples were crystallized by sulfurization annealing at 450 °C under argon flow. Their composition was measured by energy dispersive X-ray spectroscopy (EDX), whereas the structural and optical properties were investigated by grazing incidence X-ray diffraction (GIXRD), Raman spectroscopy and optical transmission measurements. As already known, we found that annealing in a sulfur environment is beneficial, increasing the crystallinity of the samples. Raman spectroscopy revealed the presence of CZTS in all the samples from the library. Secondary crystalline phases such as SnS2, ZnS and Cu–S are also formed in the samples depending on their proximity to the binary chalcogenide targets. The formation of ZnS or Cu–S strongly correlates with the Zn/Sn and Cu/Zn ratio of the total sample composition. The presence of these phases produces a variation in the bandgap between 1.41 eV and 1.68 eV. This study reveals that as we go further away from CZTS in the composition space, in the quasi-ternary Cu2S–ZnS–SnS2 diagram, secondary crystalline phases arise and increase in number, whereas the bandgap takes values outside the optimum range for photovoltaic applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33081362</pmid><doi>10.3390/ma13204624</doi><orcidid>https://orcid.org/0000-0002-4053-0650</orcidid><orcidid>https://orcid.org/0000-0002-8387-2562</orcidid><orcidid>https://orcid.org/0000-0001-6851-2991</orcidid><orcidid>https://orcid.org/0000-0002-1914-4210</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-10, Vol.13 (20), p.4624
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7603050
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Annealing
Argon
Chalcogenides
Combinatorial analysis
Composition
Copper
Copper sulfides
Crystal structure
Crystallinity
Crystallization
Energy gap
Lasers
Libraries
Magnetron sputtering
Optical properties
Phases
Photovoltaic cells
Raman spectroscopy
Software
Spectroscopic analysis
Spectrum analysis
Sulfur content
Sulfurization
Ternary systems
Thin films
Tin disulfide
X-ray spectroscopy
X-rays
Zinc sulfide
title Secondary Crystalline Phases Influence on Optical Properties in Off-Stoichiometric Cu2S–ZnS–SnS2 Thin Films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T06%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20Crystalline%20Phases%20Influence%20on%20Optical%20Properties%20in%20Off-Stoichiometric%20Cu2S%E2%80%93ZnS%E2%80%93SnS2%20Thin%20Films&rft.jtitle=Materials&rft.au=Sava,%20Florinel&rft.date=2020-10-16&rft.volume=13&rft.issue=20&rft.spage=4624&rft.pages=4624-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13204624&rft_dat=%3Cproquest_pubme%3E2548731055%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548731055&rft_id=info:pmid/33081362&rfr_iscdi=true