Probing Charge Accumulation at SrMnO3/SrTiO3 Heterointerfaces via Advanced Electron Microscopy and Spectroscopy
The last three decades have seen a growing trend toward studying the interfacial phenomena in complex oxide heterostructures. Of particular concern is the charge distribution at interfaces, which is a crucial factor in controlling the interface transport behavior. However, the study of the charge di...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-10, Vol.14 (10), p.12697-12707 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The last three decades have seen a growing trend toward studying the interfacial phenomena in complex oxide heterostructures. Of particular concern is the charge distribution at interfaces, which is a crucial factor in controlling the interface transport behavior. However, the study of the charge distribution is very challenging due to its small length scale and the intricate structure and chemistry at interfaces. Furthermore, the underlying origin of the interfacial charge distribution has been rarely studied in-depth and is still poorly understood. Here, by a combination of aberration-corrected scanning transmission electron microscopy (STEM) and spectroscopy techniques, we identify the charge accumulation in the SrMnO3 (SMO) side of SrMnO3/SrTiO3 heterointerfaces and find that the charge density attains the maximum of 0.13 ± 0.07 e–/unit cell (uc) at the first SMO monolayer. Based on quantitative atomic-scale STEM analyses and first-principle calculations, we explore the origin of interfacial charge accumulation in terms of epitaxial strain-favored oxygen vacancies, cationic interdiffusion, interfacial charge transfer, and space-charge effects. This study, therefore, provides a comprehensive description of the charge distribution and related mechanisms at the SMO/STO heterointerfaces, which is beneficial for the functionality manipulation via charge engineering at interfaces. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.0c01545 |