Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system

The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-10, Vol.10 (1), p.18415-18415, Article 18415
Hauptverfasser: Zhang, Weidong, Waise, T. M. Zaved, Toshinai, Koji, Tsuchimochi, Wakaba, Naznin, Farhana, Islam, Md Nurul, Tanida, Ryota, Sakoda, Hideyuki, Nakazato, Masamitsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18415
container_issue 1
container_start_page 18415
container_title Scientific reports
container_volume 10
creator Zhang, Weidong
Waise, T. M. Zaved
Toshinai, Koji
Tsuchimochi, Wakaba
Naznin, Farhana
Islam, Md Nurul
Tanida, Ryota
Sakoda, Hideyuki
Nakazato, Masamitsu
description The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via the vagal afferents. GLP-1 preadministration 30 min before ghrelin administration to rats and mice abolished ghrelin-induced food intake, while ghrelin preadministration abolished the anorectic effect of GLP-1. Ghrelin preadministration suppressed GLP-1-induced Fos expression in the nodose ganglia (NG). Electrophysiological assessment confirmed that the initially administered peptide abolished the vagal afferent electrical alteration induced by the subsequently administered peptide. Both the growth hormone secretagogue receptor (GHSR) and the GLP-1 receptor (GLP-1R) are co-localised in a major proportion of NG neurons that innervate the stomach. In these Ghsr + Glp1r + neurons, ghrelin preadministration abolished the GLP-1-induced calcium response. Ghrelin generated a hyperpolarising current and GLP-1 generated a depolarising current in isolated NG neurons in a patch-clamp experiment. Ghrelin and GLP-1 potently influenced each other in terms of vagally mediated feeding regulation. This peptidergic interaction allows for fine control of the electrophysiological properties of NG neurons.
doi_str_mv 10.1038/s41598-020-75621-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7595212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471540560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-5178e66b87f5ac85d00f57303783e55f658ab60096b8043a1dc3ff31336d70923</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq2qqKwW_kAPlaVeegn1R8ZOLpUqVBakleAAZ8ubjLNBWWdrO1T8e7y7QGkP-DK25pnXM_MS8pmzM85k9T2WHOqqYIIVGpTgBXwgM8FKKIQU4uOb-zE5jfGe5QOiLnn9iRxLybkSpZyR9mLyTepHbwfa-4TB7l90hekPoqeLdcCh99T6li6WNwWnAbtpsAkjdYht7zua1mGcunWOSB9sl5WscxjQJxofY8LNCTlydoh4-hzn5O7i1-35ZbG8Xlyd_1wWDWidCuC6QqVWlXZgmwpaxhxoyaSuJAI4BZVdKcbqjLBSWt420jnJpVStZrWQc_LjoLudVhtsm9xBsIPZhn5jw6MZbW_-zfh-bbrxwWioQfCdwLdngTD-njAms-ljg8NgPY5TNKIEqGStSp3Rr_-h9-MU8hp3lOZQMlAsU-JANWGMMaB7bYYzs_PRHHw02Uez99FALvrydozXkhfXMiAPQMwp32H4-_c7sk8W_6hY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471540560</pqid></control><display><type>article</type><title>Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Weidong ; Waise, T. M. Zaved ; Toshinai, Koji ; Tsuchimochi, Wakaba ; Naznin, Farhana ; Islam, Md Nurul ; Tanida, Ryota ; Sakoda, Hideyuki ; Nakazato, Masamitsu</creator><creatorcontrib>Zhang, Weidong ; Waise, T. M. Zaved ; Toshinai, Koji ; Tsuchimochi, Wakaba ; Naznin, Farhana ; Islam, Md Nurul ; Tanida, Ryota ; Sakoda, Hideyuki ; Nakazato, Masamitsu</creatorcontrib><description>The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via the vagal afferents. GLP-1 preadministration 30 min before ghrelin administration to rats and mice abolished ghrelin-induced food intake, while ghrelin preadministration abolished the anorectic effect of GLP-1. Ghrelin preadministration suppressed GLP-1-induced Fos expression in the nodose ganglia (NG). Electrophysiological assessment confirmed that the initially administered peptide abolished the vagal afferent electrical alteration induced by the subsequently administered peptide. Both the growth hormone secretagogue receptor (GHSR) and the GLP-1 receptor (GLP-1R) are co-localised in a major proportion of NG neurons that innervate the stomach. In these Ghsr + Glp1r + neurons, ghrelin preadministration abolished the GLP-1-induced calcium response. Ghrelin generated a hyperpolarising current and GLP-1 generated a depolarising current in isolated NG neurons in a patch-clamp experiment. Ghrelin and GLP-1 potently influenced each other in terms of vagally mediated feeding regulation. This peptidergic interaction allows for fine control of the electrophysiological properties of NG neurons.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-75621-5</identifier><identifier>PMID: 33116243</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/378 ; 631/443 ; 692/163 ; 692/4020 ; 692/617 ; Afferent Pathways - physiology ; Animals ; Appetite Regulation ; Calcium ; Calcium - metabolism ; Feeding ; Food intake ; Gastrointestinal tract ; Ghrelin ; Ghrelin - physiology ; Glucagon ; Glucagon-like peptide 1 ; Glucagon-Like Peptide 1 - physiology ; Glucagon-Like Peptide-1 Receptor - physiology ; Growth hormones ; Humanities and Social Sciences ; Intestine ; Male ; Mice, Inbred C57BL ; multidisciplinary ; Neurons ; Nodose ganglion ; Nodose Ganglion - physiology ; Peptides ; Rats, Wistar ; Receptors, Ghrelin - metabolism ; Science ; Science (multidisciplinary) ; Sensory neurons ; Vagus nerve</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.18415-18415, Article 18415</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-5178e66b87f5ac85d00f57303783e55f658ab60096b8043a1dc3ff31336d70923</citedby><cites>FETCH-LOGICAL-c577t-5178e66b87f5ac85d00f57303783e55f658ab60096b8043a1dc3ff31336d70923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595212/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595212/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33116243$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Waise, T. M. Zaved</creatorcontrib><creatorcontrib>Toshinai, Koji</creatorcontrib><creatorcontrib>Tsuchimochi, Wakaba</creatorcontrib><creatorcontrib>Naznin, Farhana</creatorcontrib><creatorcontrib>Islam, Md Nurul</creatorcontrib><creatorcontrib>Tanida, Ryota</creatorcontrib><creatorcontrib>Sakoda, Hideyuki</creatorcontrib><creatorcontrib>Nakazato, Masamitsu</creatorcontrib><title>Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via the vagal afferents. GLP-1 preadministration 30 min before ghrelin administration to rats and mice abolished ghrelin-induced food intake, while ghrelin preadministration abolished the anorectic effect of GLP-1. Ghrelin preadministration suppressed GLP-1-induced Fos expression in the nodose ganglia (NG). Electrophysiological assessment confirmed that the initially administered peptide abolished the vagal afferent electrical alteration induced by the subsequently administered peptide. Both the growth hormone secretagogue receptor (GHSR) and the GLP-1 receptor (GLP-1R) are co-localised in a major proportion of NG neurons that innervate the stomach. In these Ghsr + Glp1r + neurons, ghrelin preadministration abolished the GLP-1-induced calcium response. Ghrelin generated a hyperpolarising current and GLP-1 generated a depolarising current in isolated NG neurons in a patch-clamp experiment. Ghrelin and GLP-1 potently influenced each other in terms of vagally mediated feeding regulation. This peptidergic interaction allows for fine control of the electrophysiological properties of NG neurons.</description><subject>631/378</subject><subject>631/443</subject><subject>692/163</subject><subject>692/4020</subject><subject>692/617</subject><subject>Afferent Pathways - physiology</subject><subject>Animals</subject><subject>Appetite Regulation</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Feeding</subject><subject>Food intake</subject><subject>Gastrointestinal tract</subject><subject>Ghrelin</subject><subject>Ghrelin - physiology</subject><subject>Glucagon</subject><subject>Glucagon-like peptide 1</subject><subject>Glucagon-Like Peptide 1 - physiology</subject><subject>Glucagon-Like Peptide-1 Receptor - physiology</subject><subject>Growth hormones</subject><subject>Humanities and Social Sciences</subject><subject>Intestine</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>multidisciplinary</subject><subject>Neurons</subject><subject>Nodose ganglion</subject><subject>Nodose Ganglion - physiology</subject><subject>Peptides</subject><subject>Rats, Wistar</subject><subject>Receptors, Ghrelin - metabolism</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sensory neurons</subject><subject>Vagus nerve</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1P3DAQhq2qqKwW_kAPlaVeegn1R8ZOLpUqVBakleAAZ8ubjLNBWWdrO1T8e7y7QGkP-DK25pnXM_MS8pmzM85k9T2WHOqqYIIVGpTgBXwgM8FKKIQU4uOb-zE5jfGe5QOiLnn9iRxLybkSpZyR9mLyTepHbwfa-4TB7l90hekPoqeLdcCh99T6li6WNwWnAbtpsAkjdYht7zua1mGcunWOSB9sl5WscxjQJxofY8LNCTlydoh4-hzn5O7i1-35ZbG8Xlyd_1wWDWidCuC6QqVWlXZgmwpaxhxoyaSuJAI4BZVdKcbqjLBSWt420jnJpVStZrWQc_LjoLudVhtsm9xBsIPZhn5jw6MZbW_-zfh-bbrxwWioQfCdwLdngTD-njAms-ljg8NgPY5TNKIEqGStSp3Rr_-h9-MU8hp3lOZQMlAsU-JANWGMMaB7bYYzs_PRHHw02Uez99FALvrydozXkhfXMiAPQMwp32H4-_c7sk8W_6hY</recordid><startdate>20201028</startdate><enddate>20201028</enddate><creator>Zhang, Weidong</creator><creator>Waise, T. M. Zaved</creator><creator>Toshinai, Koji</creator><creator>Tsuchimochi, Wakaba</creator><creator>Naznin, Farhana</creator><creator>Islam, Md Nurul</creator><creator>Tanida, Ryota</creator><creator>Sakoda, Hideyuki</creator><creator>Nakazato, Masamitsu</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201028</creationdate><title>Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system</title><author>Zhang, Weidong ; Waise, T. M. Zaved ; Toshinai, Koji ; Tsuchimochi, Wakaba ; Naznin, Farhana ; Islam, Md Nurul ; Tanida, Ryota ; Sakoda, Hideyuki ; Nakazato, Masamitsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-5178e66b87f5ac85d00f57303783e55f658ab60096b8043a1dc3ff31336d70923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/378</topic><topic>631/443</topic><topic>692/163</topic><topic>692/4020</topic><topic>692/617</topic><topic>Afferent Pathways - physiology</topic><topic>Animals</topic><topic>Appetite Regulation</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Feeding</topic><topic>Food intake</topic><topic>Gastrointestinal tract</topic><topic>Ghrelin</topic><topic>Ghrelin - physiology</topic><topic>Glucagon</topic><topic>Glucagon-like peptide 1</topic><topic>Glucagon-Like Peptide 1 - physiology</topic><topic>Glucagon-Like Peptide-1 Receptor - physiology</topic><topic>Growth hormones</topic><topic>Humanities and Social Sciences</topic><topic>Intestine</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>multidisciplinary</topic><topic>Neurons</topic><topic>Nodose ganglion</topic><topic>Nodose Ganglion - physiology</topic><topic>Peptides</topic><topic>Rats, Wistar</topic><topic>Receptors, Ghrelin - metabolism</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sensory neurons</topic><topic>Vagus nerve</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weidong</creatorcontrib><creatorcontrib>Waise, T. M. Zaved</creatorcontrib><creatorcontrib>Toshinai, Koji</creatorcontrib><creatorcontrib>Tsuchimochi, Wakaba</creatorcontrib><creatorcontrib>Naznin, Farhana</creatorcontrib><creatorcontrib>Islam, Md Nurul</creatorcontrib><creatorcontrib>Tanida, Ryota</creatorcontrib><creatorcontrib>Sakoda, Hideyuki</creatorcontrib><creatorcontrib>Nakazato, Masamitsu</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weidong</au><au>Waise, T. M. Zaved</au><au>Toshinai, Koji</au><au>Tsuchimochi, Wakaba</au><au>Naznin, Farhana</au><au>Islam, Md Nurul</au><au>Tanida, Ryota</au><au>Sakoda, Hideyuki</au><au>Nakazato, Masamitsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-28</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>18415</spage><epage>18415</epage><pages>18415-18415</pages><artnum>18415</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The gastrointestinal tract transmits feeding-regulatory signals to the brain via neuronal and hormonal pathways. Here we studied the interaction between the orexigenic gastric peptide, ghrelin, and the anorectic intestinal peptide, glucagon-like peptide 1 (GLP-1), in terms of feeding regulation via the vagal afferents. GLP-1 preadministration 30 min before ghrelin administration to rats and mice abolished ghrelin-induced food intake, while ghrelin preadministration abolished the anorectic effect of GLP-1. Ghrelin preadministration suppressed GLP-1-induced Fos expression in the nodose ganglia (NG). Electrophysiological assessment confirmed that the initially administered peptide abolished the vagal afferent electrical alteration induced by the subsequently administered peptide. Both the growth hormone secretagogue receptor (GHSR) and the GLP-1 receptor (GLP-1R) are co-localised in a major proportion of NG neurons that innervate the stomach. In these Ghsr + Glp1r + neurons, ghrelin preadministration abolished the GLP-1-induced calcium response. Ghrelin generated a hyperpolarising current and GLP-1 generated a depolarising current in isolated NG neurons in a patch-clamp experiment. Ghrelin and GLP-1 potently influenced each other in terms of vagally mediated feeding regulation. This peptidergic interaction allows for fine control of the electrophysiological properties of NG neurons.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33116243</pmid><doi>10.1038/s41598-020-75621-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-10, Vol.10 (1), p.18415-18415, Article 18415
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7595212
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/378
631/443
692/163
692/4020
692/617
Afferent Pathways - physiology
Animals
Appetite Regulation
Calcium
Calcium - metabolism
Feeding
Food intake
Gastrointestinal tract
Ghrelin
Ghrelin - physiology
Glucagon
Glucagon-like peptide 1
Glucagon-Like Peptide 1 - physiology
Glucagon-Like Peptide-1 Receptor - physiology
Growth hormones
Humanities and Social Sciences
Intestine
Male
Mice, Inbred C57BL
multidisciplinary
Neurons
Nodose ganglion
Nodose Ganglion - physiology
Peptides
Rats, Wistar
Receptors, Ghrelin - metabolism
Science
Science (multidisciplinary)
Sensory neurons
Vagus nerve
title Functional interaction between Ghrelin and GLP-1 regulates feeding through the vagal afferent system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A24%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20interaction%20between%20Ghrelin%20and%20GLP-1%20regulates%20feeding%20through%20the%20vagal%20afferent%20system&rft.jtitle=Scientific%20reports&rft.au=Zhang,%20Weidong&rft.date=2020-10-28&rft.volume=10&rft.issue=1&rft.spage=18415&rft.epage=18415&rft.pages=18415-18415&rft.artnum=18415&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-75621-5&rft_dat=%3Cproquest_pubme%3E2471540560%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471540560&rft_id=info:pmid/33116243&rfr_iscdi=true