Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling

Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of general physiology 2020-11, Vol.152 (11), p.1
Hauptverfasser: Cely-Ortiz, Alejandra, Felice, Juan I, Díaz-Zegarra, Leandro A, Valverde, Carlos A, Federico, Marilén, Palomeque, Julieta, Wehrens, Xander H T, Kranias, Evangelia G, Aiello, Ernesto A, Lascano, Elena C, Negroni, Jorge A, Mattiazzi, Alicia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title The Journal of general physiology
container_volume 152
creator Cely-Ortiz, Alejandra
Felice, Juan I
Díaz-Zegarra, Leandro A
Valverde, Carlos A
Federico, Marilén
Palomeque, Julieta
Wehrens, Xander H T
Kranias, Evangelia G
Aiello, Ernesto A
Lascano, Elena C
Negroni, Jorge A
Mattiazzi, Alicia
description Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.
doi_str_mv 10.1085/jgp.201912512
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7594441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447315503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-c9dcb93f5ba25fedf188f176bee474b5a14e5f7f1caf35f4fad9e3caabec50603</originalsourceid><addsrcrecordid>eNpdkc1LHDEYh4O01NV69FoCvQgyNp87Mx4E2X4JQi_1HDKZN7NZMsk2yRT87xvRLrU55HfIw8P75ofQOSVXlHTy027aXzFCe8okZUdoRaUgTduK7g1aEcJYQ1kvj9FJzjtSj2TkHTrmrO_WHSErNH-GAml2QYeScbR4o9klTuBBZ6iZiytLcTFc47uQ3bStlE1xxhMEKM5o7x-x9tUBI9bBzdrnmiOeddlCvZ4QPMcRvAvTe_TWVgDOXvIUPXz98nPzvbn_8e1uc3vfGC5kaUw_mqHnVg6aSQujpV1nabseAEQrBqmpAGlbS422XFph9dgDN1oPYCRZE36Kbp69-2WYYTQQStJe7VOdLz2qqJ16_RLcVk3xt2plL4SgVXDxIkjx11J_Qc0uG_BeB4hLVkyIllMpCa_ox__QXVxSqOtVquo452RdqeaZMinmnMAehqFEPRWpapHqUGTlP_y7wYH-2xz_A4uOnOs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459433306</pqid></control><display><type>article</type><title>Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Cely-Ortiz, Alejandra ; Felice, Juan I ; Díaz-Zegarra, Leandro A ; Valverde, Carlos A ; Federico, Marilén ; Palomeque, Julieta ; Wehrens, Xander H T ; Kranias, Evangelia G ; Aiello, Ernesto A ; Lascano, Elena C ; Negroni, Jorge A ; Mattiazzi, Alicia</creator><creatorcontrib>Cely-Ortiz, Alejandra ; Felice, Juan I ; Díaz-Zegarra, Leandro A ; Valverde, Carlos A ; Federico, Marilén ; Palomeque, Julieta ; Wehrens, Xander H T ; Kranias, Evangelia G ; Aiello, Ernesto A ; Lascano, Elena C ; Negroni, Jorge A ; Mattiazzi, Alicia</creatorcontrib><description>Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.201912512</identifier><identifier>PMID: 32986800</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Ablation ; Animal models ; Ca2+/calmodulin-dependent protein kinase II ; Calcium (extracellular) ; Calcium channels (L-type) ; Cellular Physiology ; Computational Biology ; Fura-2 ; Intercellular Signaling ; Mathematical models ; Molecular Physiology ; Myocytes ; Phospholamban ; Phosphorylation ; Restitution ; Ryanodine receptors ; Velocity</subject><ispartof>The Journal of general physiology, 2020-11, Vol.152 (11), p.1</ispartof><rights>2020 Cely-Ortiz et al.</rights><rights>Copyright Rockefeller University Press Nov 2020</rights><rights>2020 Cely-Ortiz et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-c9dcb93f5ba25fedf188f176bee474b5a14e5f7f1caf35f4fad9e3caabec50603</citedby><cites>FETCH-LOGICAL-c345t-c9dcb93f5ba25fedf188f176bee474b5a14e5f7f1caf35f4fad9e3caabec50603</cites><orcidid>0000-0002-4621-6179 ; 0000-0001-7220-4692 ; 0000-0002-8914-5067 ; 0000-0001-7841-4519 ; 0000-0001-5044-672X ; 0000-0001-9636-9205 ; 0000-0002-5166-5606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32986800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cely-Ortiz, Alejandra</creatorcontrib><creatorcontrib>Felice, Juan I</creatorcontrib><creatorcontrib>Díaz-Zegarra, Leandro A</creatorcontrib><creatorcontrib>Valverde, Carlos A</creatorcontrib><creatorcontrib>Federico, Marilén</creatorcontrib><creatorcontrib>Palomeque, Julieta</creatorcontrib><creatorcontrib>Wehrens, Xander H T</creatorcontrib><creatorcontrib>Kranias, Evangelia G</creatorcontrib><creatorcontrib>Aiello, Ernesto A</creatorcontrib><creatorcontrib>Lascano, Elena C</creatorcontrib><creatorcontrib>Negroni, Jorge A</creatorcontrib><creatorcontrib>Mattiazzi, Alicia</creatorcontrib><title>Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.</description><subject>Ablation</subject><subject>Animal models</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Calcium (extracellular)</subject><subject>Calcium channels (L-type)</subject><subject>Cellular Physiology</subject><subject>Computational Biology</subject><subject>Fura-2</subject><subject>Intercellular Signaling</subject><subject>Mathematical models</subject><subject>Molecular Physiology</subject><subject>Myocytes</subject><subject>Phospholamban</subject><subject>Phosphorylation</subject><subject>Restitution</subject><subject>Ryanodine receptors</subject><subject>Velocity</subject><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LHDEYh4O01NV69FoCvQgyNp87Mx4E2X4JQi_1HDKZN7NZMsk2yRT87xvRLrU55HfIw8P75ofQOSVXlHTy027aXzFCe8okZUdoRaUgTduK7g1aEcJYQ1kvj9FJzjtSj2TkHTrmrO_WHSErNH-GAml2QYeScbR4o9klTuBBZ6iZiytLcTFc47uQ3bStlE1xxhMEKM5o7x-x9tUBI9bBzdrnmiOeddlCvZ4QPMcRvAvTe_TWVgDOXvIUPXz98nPzvbn_8e1uc3vfGC5kaUw_mqHnVg6aSQujpV1nabseAEQrBqmpAGlbS422XFph9dgDN1oPYCRZE36Kbp69-2WYYTQQStJe7VOdLz2qqJ16_RLcVk3xt2plL4SgVXDxIkjx11J_Qc0uG_BeB4hLVkyIllMpCa_ox__QXVxSqOtVquo452RdqeaZMinmnMAehqFEPRWpapHqUGTlP_y7wYH-2xz_A4uOnOs</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Cely-Ortiz, Alejandra</creator><creator>Felice, Juan I</creator><creator>Díaz-Zegarra, Leandro A</creator><creator>Valverde, Carlos A</creator><creator>Federico, Marilén</creator><creator>Palomeque, Julieta</creator><creator>Wehrens, Xander H T</creator><creator>Kranias, Evangelia G</creator><creator>Aiello, Ernesto A</creator><creator>Lascano, Elena C</creator><creator>Negroni, Jorge A</creator><creator>Mattiazzi, Alicia</creator><general>Rockefeller University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4621-6179</orcidid><orcidid>https://orcid.org/0000-0001-7220-4692</orcidid><orcidid>https://orcid.org/0000-0002-8914-5067</orcidid><orcidid>https://orcid.org/0000-0001-7841-4519</orcidid><orcidid>https://orcid.org/0000-0001-5044-672X</orcidid><orcidid>https://orcid.org/0000-0001-9636-9205</orcidid><orcidid>https://orcid.org/0000-0002-5166-5606</orcidid></search><sort><creationdate>20201102</creationdate><title>Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling</title><author>Cely-Ortiz, Alejandra ; Felice, Juan I ; Díaz-Zegarra, Leandro A ; Valverde, Carlos A ; Federico, Marilén ; Palomeque, Julieta ; Wehrens, Xander H T ; Kranias, Evangelia G ; Aiello, Ernesto A ; Lascano, Elena C ; Negroni, Jorge A ; Mattiazzi, Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-c9dcb93f5ba25fedf188f176bee474b5a14e5f7f1caf35f4fad9e3caabec50603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Animal models</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Calcium (extracellular)</topic><topic>Calcium channels (L-type)</topic><topic>Cellular Physiology</topic><topic>Computational Biology</topic><topic>Fura-2</topic><topic>Intercellular Signaling</topic><topic>Mathematical models</topic><topic>Molecular Physiology</topic><topic>Myocytes</topic><topic>Phospholamban</topic><topic>Phosphorylation</topic><topic>Restitution</topic><topic>Ryanodine receptors</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cely-Ortiz, Alejandra</creatorcontrib><creatorcontrib>Felice, Juan I</creatorcontrib><creatorcontrib>Díaz-Zegarra, Leandro A</creatorcontrib><creatorcontrib>Valverde, Carlos A</creatorcontrib><creatorcontrib>Federico, Marilén</creatorcontrib><creatorcontrib>Palomeque, Julieta</creatorcontrib><creatorcontrib>Wehrens, Xander H T</creatorcontrib><creatorcontrib>Kranias, Evangelia G</creatorcontrib><creatorcontrib>Aiello, Ernesto A</creatorcontrib><creatorcontrib>Lascano, Elena C</creatorcontrib><creatorcontrib>Negroni, Jorge A</creatorcontrib><creatorcontrib>Mattiazzi, Alicia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cely-Ortiz, Alejandra</au><au>Felice, Juan I</au><au>Díaz-Zegarra, Leandro A</au><au>Valverde, Carlos A</au><au>Federico, Marilén</au><au>Palomeque, Julieta</au><au>Wehrens, Xander H T</au><au>Kranias, Evangelia G</au><au>Aiello, Ernesto A</au><au>Lascano, Elena C</au><au>Negroni, Jorge A</au><au>Mattiazzi, Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2020-11-02</date><risdate>2020</risdate><volume>152</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>0022-1295</issn><eissn>1540-7748</eissn><abstract>Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>32986800</pmid><doi>10.1085/jgp.201912512</doi><orcidid>https://orcid.org/0000-0002-4621-6179</orcidid><orcidid>https://orcid.org/0000-0001-7220-4692</orcidid><orcidid>https://orcid.org/0000-0002-8914-5067</orcidid><orcidid>https://orcid.org/0000-0001-7841-4519</orcidid><orcidid>https://orcid.org/0000-0001-5044-672X</orcidid><orcidid>https://orcid.org/0000-0001-9636-9205</orcidid><orcidid>https://orcid.org/0000-0002-5166-5606</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1295
ispartof The Journal of general physiology, 2020-11, Vol.152 (11), p.1
issn 0022-1295
1540-7748
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7594441
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Ablation
Animal models
Ca2+/calmodulin-dependent protein kinase II
Calcium (extracellular)
Calcium channels (L-type)
Cellular Physiology
Computational Biology
Fura-2
Intercellular Signaling
Mathematical models
Molecular Physiology
Myocytes
Phospholamban
Phosphorylation
Restitution
Ryanodine receptors
Velocity
title Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determinants%20of%20Ca2+%20release%20restitution:%20Insights%20from%20genetically%20altered%20animals%20and%20mathematical%20modeling&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Cely-Ortiz,%20Alejandra&rft.date=2020-11-02&rft.volume=152&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=0022-1295&rft.eissn=1540-7748&rft_id=info:doi/10.1085/jgp.201912512&rft_dat=%3Cproquest_pubme%3E2447315503%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459433306&rft_id=info:pmid/32986800&rfr_iscdi=true