Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling
Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role o...
Gespeichert in:
Veröffentlicht in: | The Journal of general physiology 2020-11, Vol.152 (11), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | The Journal of general physiology |
container_volume | 152 |
creator | Cely-Ortiz, Alejandra Felice, Juan I Díaz-Zegarra, Leandro A Valverde, Carlos A Federico, Marilén Palomeque, Julieta Wehrens, Xander H T Kranias, Evangelia G Aiello, Ernesto A Lascano, Elena C Negroni, Jorge A Mattiazzi, Alicia |
description | Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load. |
doi_str_mv | 10.1085/jgp.201912512 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7594441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2447315503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-c9dcb93f5ba25fedf188f176bee474b5a14e5f7f1caf35f4fad9e3caabec50603</originalsourceid><addsrcrecordid>eNpdkc1LHDEYh4O01NV69FoCvQgyNp87Mx4E2X4JQi_1HDKZN7NZMsk2yRT87xvRLrU55HfIw8P75ofQOSVXlHTy027aXzFCe8okZUdoRaUgTduK7g1aEcJYQ1kvj9FJzjtSj2TkHTrmrO_WHSErNH-GAml2QYeScbR4o9klTuBBZ6iZiytLcTFc47uQ3bStlE1xxhMEKM5o7x-x9tUBI9bBzdrnmiOeddlCvZ4QPMcRvAvTe_TWVgDOXvIUPXz98nPzvbn_8e1uc3vfGC5kaUw_mqHnVg6aSQujpV1nabseAEQrBqmpAGlbS422XFph9dgDN1oPYCRZE36Kbp69-2WYYTQQStJe7VOdLz2qqJ16_RLcVk3xt2plL4SgVXDxIkjx11J_Qc0uG_BeB4hLVkyIllMpCa_ox__QXVxSqOtVquo452RdqeaZMinmnMAehqFEPRWpapHqUGTlP_y7wYH-2xz_A4uOnOs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459433306</pqid></control><display><type>article</type><title>Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Cely-Ortiz, Alejandra ; Felice, Juan I ; Díaz-Zegarra, Leandro A ; Valverde, Carlos A ; Federico, Marilén ; Palomeque, Julieta ; Wehrens, Xander H T ; Kranias, Evangelia G ; Aiello, Ernesto A ; Lascano, Elena C ; Negroni, Jorge A ; Mattiazzi, Alicia</creator><creatorcontrib>Cely-Ortiz, Alejandra ; Felice, Juan I ; Díaz-Zegarra, Leandro A ; Valverde, Carlos A ; Federico, Marilén ; Palomeque, Julieta ; Wehrens, Xander H T ; Kranias, Evangelia G ; Aiello, Ernesto A ; Lascano, Elena C ; Negroni, Jorge A ; Mattiazzi, Alicia</creatorcontrib><description>Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.</description><identifier>ISSN: 0022-1295</identifier><identifier>EISSN: 1540-7748</identifier><identifier>DOI: 10.1085/jgp.201912512</identifier><identifier>PMID: 32986800</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Ablation ; Animal models ; Ca2+/calmodulin-dependent protein kinase II ; Calcium (extracellular) ; Calcium channels (L-type) ; Cellular Physiology ; Computational Biology ; Fura-2 ; Intercellular Signaling ; Mathematical models ; Molecular Physiology ; Myocytes ; Phospholamban ; Phosphorylation ; Restitution ; Ryanodine receptors ; Velocity</subject><ispartof>The Journal of general physiology, 2020-11, Vol.152 (11), p.1</ispartof><rights>2020 Cely-Ortiz et al.</rights><rights>Copyright Rockefeller University Press Nov 2020</rights><rights>2020 Cely-Ortiz et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-c9dcb93f5ba25fedf188f176bee474b5a14e5f7f1caf35f4fad9e3caabec50603</citedby><cites>FETCH-LOGICAL-c345t-c9dcb93f5ba25fedf188f176bee474b5a14e5f7f1caf35f4fad9e3caabec50603</cites><orcidid>0000-0002-4621-6179 ; 0000-0001-7220-4692 ; 0000-0002-8914-5067 ; 0000-0001-7841-4519 ; 0000-0001-5044-672X ; 0000-0001-9636-9205 ; 0000-0002-5166-5606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32986800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cely-Ortiz, Alejandra</creatorcontrib><creatorcontrib>Felice, Juan I</creatorcontrib><creatorcontrib>Díaz-Zegarra, Leandro A</creatorcontrib><creatorcontrib>Valverde, Carlos A</creatorcontrib><creatorcontrib>Federico, Marilén</creatorcontrib><creatorcontrib>Palomeque, Julieta</creatorcontrib><creatorcontrib>Wehrens, Xander H T</creatorcontrib><creatorcontrib>Kranias, Evangelia G</creatorcontrib><creatorcontrib>Aiello, Ernesto A</creatorcontrib><creatorcontrib>Lascano, Elena C</creatorcontrib><creatorcontrib>Negroni, Jorge A</creatorcontrib><creatorcontrib>Mattiazzi, Alicia</creatorcontrib><title>Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling</title><title>The Journal of general physiology</title><addtitle>J Gen Physiol</addtitle><description>Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.</description><subject>Ablation</subject><subject>Animal models</subject><subject>Ca2+/calmodulin-dependent protein kinase II</subject><subject>Calcium (extracellular)</subject><subject>Calcium channels (L-type)</subject><subject>Cellular Physiology</subject><subject>Computational Biology</subject><subject>Fura-2</subject><subject>Intercellular Signaling</subject><subject>Mathematical models</subject><subject>Molecular Physiology</subject><subject>Myocytes</subject><subject>Phospholamban</subject><subject>Phosphorylation</subject><subject>Restitution</subject><subject>Ryanodine receptors</subject><subject>Velocity</subject><issn>0022-1295</issn><issn>1540-7748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1LHDEYh4O01NV69FoCvQgyNp87Mx4E2X4JQi_1HDKZN7NZMsk2yRT87xvRLrU55HfIw8P75ofQOSVXlHTy027aXzFCe8okZUdoRaUgTduK7g1aEcJYQ1kvj9FJzjtSj2TkHTrmrO_WHSErNH-GAml2QYeScbR4o9klTuBBZ6iZiytLcTFc47uQ3bStlE1xxhMEKM5o7x-x9tUBI9bBzdrnmiOeddlCvZ4QPMcRvAvTe_TWVgDOXvIUPXz98nPzvbn_8e1uc3vfGC5kaUw_mqHnVg6aSQujpV1nabseAEQrBqmpAGlbS422XFph9dgDN1oPYCRZE36Kbp69-2WYYTQQStJe7VOdLz2qqJ16_RLcVk3xt2plL4SgVXDxIkjx11J_Qc0uG_BeB4hLVkyIllMpCa_ox__QXVxSqOtVquo452RdqeaZMinmnMAehqFEPRWpapHqUGTlP_y7wYH-2xz_A4uOnOs</recordid><startdate>20201102</startdate><enddate>20201102</enddate><creator>Cely-Ortiz, Alejandra</creator><creator>Felice, Juan I</creator><creator>Díaz-Zegarra, Leandro A</creator><creator>Valverde, Carlos A</creator><creator>Federico, Marilén</creator><creator>Palomeque, Julieta</creator><creator>Wehrens, Xander H T</creator><creator>Kranias, Evangelia G</creator><creator>Aiello, Ernesto A</creator><creator>Lascano, Elena C</creator><creator>Negroni, Jorge A</creator><creator>Mattiazzi, Alicia</creator><general>Rockefeller University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4621-6179</orcidid><orcidid>https://orcid.org/0000-0001-7220-4692</orcidid><orcidid>https://orcid.org/0000-0002-8914-5067</orcidid><orcidid>https://orcid.org/0000-0001-7841-4519</orcidid><orcidid>https://orcid.org/0000-0001-5044-672X</orcidid><orcidid>https://orcid.org/0000-0001-9636-9205</orcidid><orcidid>https://orcid.org/0000-0002-5166-5606</orcidid></search><sort><creationdate>20201102</creationdate><title>Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling</title><author>Cely-Ortiz, Alejandra ; Felice, Juan I ; Díaz-Zegarra, Leandro A ; Valverde, Carlos A ; Federico, Marilén ; Palomeque, Julieta ; Wehrens, Xander H T ; Kranias, Evangelia G ; Aiello, Ernesto A ; Lascano, Elena C ; Negroni, Jorge A ; Mattiazzi, Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-c9dcb93f5ba25fedf188f176bee474b5a14e5f7f1caf35f4fad9e3caabec50603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Ablation</topic><topic>Animal models</topic><topic>Ca2+/calmodulin-dependent protein kinase II</topic><topic>Calcium (extracellular)</topic><topic>Calcium channels (L-type)</topic><topic>Cellular Physiology</topic><topic>Computational Biology</topic><topic>Fura-2</topic><topic>Intercellular Signaling</topic><topic>Mathematical models</topic><topic>Molecular Physiology</topic><topic>Myocytes</topic><topic>Phospholamban</topic><topic>Phosphorylation</topic><topic>Restitution</topic><topic>Ryanodine receptors</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cely-Ortiz, Alejandra</creatorcontrib><creatorcontrib>Felice, Juan I</creatorcontrib><creatorcontrib>Díaz-Zegarra, Leandro A</creatorcontrib><creatorcontrib>Valverde, Carlos A</creatorcontrib><creatorcontrib>Federico, Marilén</creatorcontrib><creatorcontrib>Palomeque, Julieta</creatorcontrib><creatorcontrib>Wehrens, Xander H T</creatorcontrib><creatorcontrib>Kranias, Evangelia G</creatorcontrib><creatorcontrib>Aiello, Ernesto A</creatorcontrib><creatorcontrib>Lascano, Elena C</creatorcontrib><creatorcontrib>Negroni, Jorge A</creatorcontrib><creatorcontrib>Mattiazzi, Alicia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of general physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cely-Ortiz, Alejandra</au><au>Felice, Juan I</au><au>Díaz-Zegarra, Leandro A</au><au>Valverde, Carlos A</au><au>Federico, Marilén</au><au>Palomeque, Julieta</au><au>Wehrens, Xander H T</au><au>Kranias, Evangelia G</au><au>Aiello, Ernesto A</au><au>Lascano, Elena C</au><au>Negroni, Jorge A</au><au>Mattiazzi, Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling</atitle><jtitle>The Journal of general physiology</jtitle><addtitle>J Gen Physiol</addtitle><date>2020-11-02</date><risdate>2020</risdate><volume>152</volume><issue>11</issue><spage>1</spage><pages>1-</pages><issn>0022-1295</issn><eissn>1540-7748</eissn><abstract>Each heartbeat is followed by a refractory period. Recovery from refractoriness is known as Ca2+ release restitution (CRR), and its alterations are potential triggers of Ca2+ arrhythmias. Although the control of CRR has been associated with SR Ca2+ load and RYR2 Ca2+ sensitivity, the relative role of some of the determinants of CRR remains largely undefined. An intriguing point, difficult to dissect and previously neglected, is the possible independent effect of SR Ca2+ content versus the velocity of SR Ca2+ refilling on CRR. To assess these interrogations, we used isolated myocytes with phospholamban (PLN) ablation (PLNKO), knock-in mice with pseudoconstitutive CaMKII phosphorylation of RYR2 S2814 (S2814D), S2814D crossed with PLNKO mice (SDKO), and a previously validated human cardiac myocyte model. Restitution of cytosolic Ca2+ (Fura-2 AM) and L-type calcium current (ICaL; patch-clamp) was evaluated with a two-pulse (S1/S2) protocol. CRR and ICaL restitution increased as a function of the (S2-S1) coupling interval, following an exponential curve. When SR Ca2+ load was increased by increasing extracellular [Ca2+] from 2.0 to 4.0 mM, CRR and ICaL restitution were enhanced, suggesting that ICaL restitution may contribute to the faster CRR observed at 4.0 mM [Ca2+]. In contrast, ICaL restitution did not differ among the different mouse models. For a given SR Ca2+ load, CRR was accelerated in S2814D myocytes versus WT, but not in PLNKO and SDKO myocytes versus WT and S2814D, respectively. The model mimics all experimental data. Moreover, when the PLN ablation-induced decrease in RYR2 expression was corrected, the model revealed that CRR was accelerated in PLNKO and SDKO versus WT and S2814D myocytes, consistent with the enhanced velocity of refilling, SR [Ca2+] recovery, and CRR. We speculate that refilling rate might enhance CRR independently of SR Ca2+ load.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>32986800</pmid><doi>10.1085/jgp.201912512</doi><orcidid>https://orcid.org/0000-0002-4621-6179</orcidid><orcidid>https://orcid.org/0000-0001-7220-4692</orcidid><orcidid>https://orcid.org/0000-0002-8914-5067</orcidid><orcidid>https://orcid.org/0000-0001-7841-4519</orcidid><orcidid>https://orcid.org/0000-0001-5044-672X</orcidid><orcidid>https://orcid.org/0000-0001-9636-9205</orcidid><orcidid>https://orcid.org/0000-0002-5166-5606</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1295 |
ispartof | The Journal of general physiology, 2020-11, Vol.152 (11), p.1 |
issn | 0022-1295 1540-7748 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7594441 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Ablation Animal models Ca2+/calmodulin-dependent protein kinase II Calcium (extracellular) Calcium channels (L-type) Cellular Physiology Computational Biology Fura-2 Intercellular Signaling Mathematical models Molecular Physiology Myocytes Phospholamban Phosphorylation Restitution Ryanodine receptors Velocity |
title | Determinants of Ca2+ release restitution: Insights from genetically altered animals and mathematical modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T05%3A30%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determinants%20of%20Ca2+%20release%20restitution:%20Insights%20from%20genetically%20altered%20animals%20and%20mathematical%20modeling&rft.jtitle=The%20Journal%20of%20general%20physiology&rft.au=Cely-Ortiz,%20Alejandra&rft.date=2020-11-02&rft.volume=152&rft.issue=11&rft.spage=1&rft.pages=1-&rft.issn=0022-1295&rft.eissn=1540-7748&rft_id=info:doi/10.1085/jgp.201912512&rft_dat=%3Cproquest_pubme%3E2447315503%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459433306&rft_id=info:pmid/32986800&rfr_iscdi=true |