Real-time assessment of learning curve for robot-assisted laparoscopic prostatectomy
The learning curves analysed to date for robot-assisted laparoscopic prostatectomy are based on arbitrary cut-offs of the total cases. We analysed a large dataset of robot-assisted laparoscopic prostatectomies from a single centre between 2008 and 2019 for assessment of the learning curve for periop...
Gespeichert in:
Veröffentlicht in: | Annals of the Royal College of Surgeons of England 2020-11, Vol.102 (9), p.717-725 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 725 |
---|---|
container_issue | 9 |
container_start_page | 717 |
container_title | Annals of the Royal College of Surgeons of England |
container_volume | 102 |
creator | Tamhankar, A Spencer, N Hampson, A Noel, J El-Taji, O Arianayagam, R McNicholas, T Boustead, G Lane, T Adshead, J Vasdev, N |
description | The learning curves analysed to date for robot-assisted laparoscopic prostatectomy are based on arbitrary cut-offs of the total cases.
We analysed a large dataset of robot-assisted laparoscopic prostatectomies from a single centre between 2008 and 2019 for assessment of the learning curve for perioperative outcomes with respect to time and individual cases.
A total of 1,406 patients were evaluated, with mean operative time 198.08 minutes and mean console time 161.05 minutes. A plot of operative time and console time showed an initial decline followed by a near-constant phase. The inflection points were detected at 1,398 days (308th case) for operative time and 1,470 days (324th case) for console time, with a declining trend of 8.83 minutes and 7.07 minutes, respectively, per quarter-year ( |
doi_str_mv | 10.1308/RCSANN.2020.0139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7591624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499983530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-961873e524b68dbf88f95112a906114adc50b709e886ee3be394ffb5578544bd3</originalsourceid><addsrcrecordid>eNpdkc1r3DAQxUVpSTZJ7z0VQy-9eDv6sqVLISzNB4QUNulZyPI4dbAtV5ID-e-jJZuQ9DQD85vHvHmEfKGwphzUj-3m5vT6es2AwRoo1x_IiopalTUo_pGsALgslRL8kBzFeA9Ada3oATnkTHJFGV2R2y3aoUz9iIWNEWMccUqF74oBbZj66a5wS3jAovOhCL7xqcxYHxO2xWBnG3x0fu5dMecu2YQu-fHxhHzq7BDx874ekz9nv243F-XV7_PLzelV6QQTqdQVVTVHyURTqbbplOq0pJRZDRWlwrZOQlODRqUqRN4g16LrGilrJYVoWn5Mfj7rzkszYuvy6cEOZg79aMOj8bY37ydT_9fc-QdTS00rJrLA971A8P8WjMmMfXQ4DHZCv0TDRH6qlqBZRr_9h977JUzZXqa01opLDpmCZ8rlf8SA3esxFMwuMhNctNNkdpGZXWR55etbE68LLxnxJ1cqlCY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499983530</pqid></control><display><type>article</type><title>Real-time assessment of learning curve for robot-assisted laparoscopic prostatectomy</title><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>Free E-Journal (出版社公開部分のみ)</source><creator>Tamhankar, A ; Spencer, N ; Hampson, A ; Noel, J ; El-Taji, O ; Arianayagam, R ; McNicholas, T ; Boustead, G ; Lane, T ; Adshead, J ; Vasdev, N</creator><creatorcontrib>Tamhankar, A ; Spencer, N ; Hampson, A ; Noel, J ; El-Taji, O ; Arianayagam, R ; McNicholas, T ; Boustead, G ; Lane, T ; Adshead, J ; Vasdev, N</creatorcontrib><description>The learning curves analysed to date for robot-assisted laparoscopic prostatectomy are based on arbitrary cut-offs of the total cases.
We analysed a large dataset of robot-assisted laparoscopic prostatectomies from a single centre between 2008 and 2019 for assessment of the learning curve for perioperative outcomes with respect to time and individual cases.
A total of 1,406 patients were evaluated, with mean operative time 198.08 minutes and mean console time 161.05 minutes. A plot of operative time and console time showed an initial decline followed by a near-constant phase. The inflection points were detected at 1,398 days (308th case) for operative time and 1,470 days (324th case) for console time, with a declining trend of 8.83 minutes and 7.07 minutes, respectively, per quarter-year (
<0.001). Mean estimated blood loss showed a 70.04% reduction between the start (214.76ml) and end (64.35ml) (
<0.001). The complication rate did not vary with respect to time (
=0.188) or the number of procedures (
=0.354). There was insufficient evidence to claim that the number of operations (
=0.326), D'Amico classification (
=0.114 for intermediate versus low;
=0.158 for high versus low) or time (
=0.114) was associated with the odds of positive surgical margins.
It takes about 300 cases and nearly 4 years to standardise operative and console times, with a requirement of around 80 cases per annum for a single surgical team in the initial years to optimise the outcomes of robot-assisted laparoscopic prostatectomy.</description><identifier>ISSN: 0035-8843</identifier><identifier>EISSN: 1478-7083</identifier><identifier>DOI: 10.1308/RCSANN.2020.0139</identifier><identifier>PMID: 32538121</identifier><language>eng</language><publisher>England: BMJ Publishing Group LTD</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Antigens ; Blood Loss, Surgical ; Blood transfusions ; Cancer surgery ; Catheters ; Data collection ; Humans ; Laparoscopy ; Laparoscopy - education ; Learning Curve ; Length of Stay ; Male ; Margins of Excision ; Middle Aged ; Operative Time ; Patients ; Prostate ; Prostate cancer ; Prostatectomy - education ; Retrospective Studies ; Robotic Surgical Procedures - education ; Robots ; Surgeons ; Training ; Urological surgery</subject><ispartof>Annals of the Royal College of Surgeons of England, 2020-11, Vol.102 (9), p.717-725</ispartof><rights>Copyright Royal College of Surgeons of England Nov 2020</rights><rights>Copyright © 2020, All rights reserved by the Royal College of Surgeons of England 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-961873e524b68dbf88f95112a906114adc50b709e886ee3be394ffb5578544bd3</citedby><cites>FETCH-LOGICAL-c424t-961873e524b68dbf88f95112a906114adc50b709e886ee3be394ffb5578544bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591624/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7591624/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32538121$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tamhankar, A</creatorcontrib><creatorcontrib>Spencer, N</creatorcontrib><creatorcontrib>Hampson, A</creatorcontrib><creatorcontrib>Noel, J</creatorcontrib><creatorcontrib>El-Taji, O</creatorcontrib><creatorcontrib>Arianayagam, R</creatorcontrib><creatorcontrib>McNicholas, T</creatorcontrib><creatorcontrib>Boustead, G</creatorcontrib><creatorcontrib>Lane, T</creatorcontrib><creatorcontrib>Adshead, J</creatorcontrib><creatorcontrib>Vasdev, N</creatorcontrib><title>Real-time assessment of learning curve for robot-assisted laparoscopic prostatectomy</title><title>Annals of the Royal College of Surgeons of England</title><addtitle>Ann R Coll Surg Engl</addtitle><description>The learning curves analysed to date for robot-assisted laparoscopic prostatectomy are based on arbitrary cut-offs of the total cases.
We analysed a large dataset of robot-assisted laparoscopic prostatectomies from a single centre between 2008 and 2019 for assessment of the learning curve for perioperative outcomes with respect to time and individual cases.
A total of 1,406 patients were evaluated, with mean operative time 198.08 minutes and mean console time 161.05 minutes. A plot of operative time and console time showed an initial decline followed by a near-constant phase. The inflection points were detected at 1,398 days (308th case) for operative time and 1,470 days (324th case) for console time, with a declining trend of 8.83 minutes and 7.07 minutes, respectively, per quarter-year (
<0.001). Mean estimated blood loss showed a 70.04% reduction between the start (214.76ml) and end (64.35ml) (
<0.001). The complication rate did not vary with respect to time (
=0.188) or the number of procedures (
=0.354). There was insufficient evidence to claim that the number of operations (
=0.326), D'Amico classification (
=0.114 for intermediate versus low;
=0.158 for high versus low) or time (
=0.114) was associated with the odds of positive surgical margins.
It takes about 300 cases and nearly 4 years to standardise operative and console times, with a requirement of around 80 cases per annum for a single surgical team in the initial years to optimise the outcomes of robot-assisted laparoscopic prostatectomy.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Antigens</subject><subject>Blood Loss, Surgical</subject><subject>Blood transfusions</subject><subject>Cancer surgery</subject><subject>Catheters</subject><subject>Data collection</subject><subject>Humans</subject><subject>Laparoscopy</subject><subject>Laparoscopy - education</subject><subject>Learning Curve</subject><subject>Length of Stay</subject><subject>Male</subject><subject>Margins of Excision</subject><subject>Middle Aged</subject><subject>Operative Time</subject><subject>Patients</subject><subject>Prostate</subject><subject>Prostate cancer</subject><subject>Prostatectomy - education</subject><subject>Retrospective Studies</subject><subject>Robotic Surgical Procedures - education</subject><subject>Robots</subject><subject>Surgeons</subject><subject>Training</subject><subject>Urological surgery</subject><issn>0035-8843</issn><issn>1478-7083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpdkc1r3DAQxUVpSTZJ7z0VQy-9eDv6sqVLISzNB4QUNulZyPI4dbAtV5ID-e-jJZuQ9DQD85vHvHmEfKGwphzUj-3m5vT6es2AwRoo1x_IiopalTUo_pGsALgslRL8kBzFeA9Ada3oATnkTHJFGV2R2y3aoUz9iIWNEWMccUqF74oBbZj66a5wS3jAovOhCL7xqcxYHxO2xWBnG3x0fu5dMecu2YQu-fHxhHzq7BDx874ekz9nv243F-XV7_PLzelV6QQTqdQVVTVHyURTqbbplOq0pJRZDRWlwrZOQlODRqUqRN4g16LrGilrJYVoWn5Mfj7rzkszYuvy6cEOZg79aMOj8bY37ydT_9fc-QdTS00rJrLA971A8P8WjMmMfXQ4DHZCv0TDRH6qlqBZRr_9h977JUzZXqa01opLDpmCZ8rlf8SA3esxFMwuMhNctNNkdpGZXWR55etbE68LLxnxJ1cqlCY</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Tamhankar, A</creator><creator>Spencer, N</creator><creator>Hampson, A</creator><creator>Noel, J</creator><creator>El-Taji, O</creator><creator>Arianayagam, R</creator><creator>McNicholas, T</creator><creator>Boustead, G</creator><creator>Lane, T</creator><creator>Adshead, J</creator><creator>Vasdev, N</creator><general>BMJ Publishing Group LTD</general><general>Royal College of Surgeons</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>EHMNL</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201101</creationdate><title>Real-time assessment of learning curve for robot-assisted laparoscopic prostatectomy</title><author>Tamhankar, A ; Spencer, N ; Hampson, A ; Noel, J ; El-Taji, O ; Arianayagam, R ; McNicholas, T ; Boustead, G ; Lane, T ; Adshead, J ; Vasdev, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-961873e524b68dbf88f95112a906114adc50b709e886ee3be394ffb5578544bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Antigens</topic><topic>Blood Loss, Surgical</topic><topic>Blood transfusions</topic><topic>Cancer surgery</topic><topic>Catheters</topic><topic>Data collection</topic><topic>Humans</topic><topic>Laparoscopy</topic><topic>Laparoscopy - education</topic><topic>Learning Curve</topic><topic>Length of Stay</topic><topic>Male</topic><topic>Margins of Excision</topic><topic>Middle Aged</topic><topic>Operative Time</topic><topic>Patients</topic><topic>Prostate</topic><topic>Prostate cancer</topic><topic>Prostatectomy - education</topic><topic>Retrospective Studies</topic><topic>Robotic Surgical Procedures - education</topic><topic>Robots</topic><topic>Surgeons</topic><topic>Training</topic><topic>Urological surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tamhankar, A</creatorcontrib><creatorcontrib>Spencer, N</creatorcontrib><creatorcontrib>Hampson, A</creatorcontrib><creatorcontrib>Noel, J</creatorcontrib><creatorcontrib>El-Taji, O</creatorcontrib><creatorcontrib>Arianayagam, R</creatorcontrib><creatorcontrib>McNicholas, T</creatorcontrib><creatorcontrib>Boustead, G</creatorcontrib><creatorcontrib>Lane, T</creatorcontrib><creatorcontrib>Adshead, J</creatorcontrib><creatorcontrib>Vasdev, N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>UK & Ireland Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of the Royal College of Surgeons of England</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamhankar, A</au><au>Spencer, N</au><au>Hampson, A</au><au>Noel, J</au><au>El-Taji, O</au><au>Arianayagam, R</au><au>McNicholas, T</au><au>Boustead, G</au><au>Lane, T</au><au>Adshead, J</au><au>Vasdev, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time assessment of learning curve for robot-assisted laparoscopic prostatectomy</atitle><jtitle>Annals of the Royal College of Surgeons of England</jtitle><addtitle>Ann R Coll Surg Engl</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>102</volume><issue>9</issue><spage>717</spage><epage>725</epage><pages>717-725</pages><issn>0035-8843</issn><eissn>1478-7083</eissn><abstract>The learning curves analysed to date for robot-assisted laparoscopic prostatectomy are based on arbitrary cut-offs of the total cases.
We analysed a large dataset of robot-assisted laparoscopic prostatectomies from a single centre between 2008 and 2019 for assessment of the learning curve for perioperative outcomes with respect to time and individual cases.
A total of 1,406 patients were evaluated, with mean operative time 198.08 minutes and mean console time 161.05 minutes. A plot of operative time and console time showed an initial decline followed by a near-constant phase. The inflection points were detected at 1,398 days (308th case) for operative time and 1,470 days (324th case) for console time, with a declining trend of 8.83 minutes and 7.07 minutes, respectively, per quarter-year (
<0.001). Mean estimated blood loss showed a 70.04% reduction between the start (214.76ml) and end (64.35ml) (
<0.001). The complication rate did not vary with respect to time (
=0.188) or the number of procedures (
=0.354). There was insufficient evidence to claim that the number of operations (
=0.326), D'Amico classification (
=0.114 for intermediate versus low;
=0.158 for high versus low) or time (
=0.114) was associated with the odds of positive surgical margins.
It takes about 300 cases and nearly 4 years to standardise operative and console times, with a requirement of around 80 cases per annum for a single surgical team in the initial years to optimise the outcomes of robot-assisted laparoscopic prostatectomy.</abstract><cop>England</cop><pub>BMJ Publishing Group LTD</pub><pmid>32538121</pmid><doi>10.1308/RCSANN.2020.0139</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8843 |
ispartof | Annals of the Royal College of Surgeons of England, 2020-11, Vol.102 (9), p.717-725 |
issn | 0035-8843 1478-7083 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7591624 |
source | MEDLINE; NCBI_PubMed Central(免费); Free E-Journal (出版社公開部分のみ) |
subjects | Adult Aged Aged, 80 and over Antigens Blood Loss, Surgical Blood transfusions Cancer surgery Catheters Data collection Humans Laparoscopy Laparoscopy - education Learning Curve Length of Stay Male Margins of Excision Middle Aged Operative Time Patients Prostate Prostate cancer Prostatectomy - education Retrospective Studies Robotic Surgical Procedures - education Robots Surgeons Training Urological surgery |
title | Real-time assessment of learning curve for robot-assisted laparoscopic prostatectomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A22%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20assessment%20of%20learning%20curve%20for%20robot-assisted%20laparoscopic%20prostatectomy&rft.jtitle=Annals%20of%20the%20Royal%20College%20of%20Surgeons%20of%20England&rft.au=Tamhankar,%20A&rft.date=2020-11-01&rft.volume=102&rft.issue=9&rft.spage=717&rft.epage=725&rft.pages=717-725&rft.issn=0035-8843&rft.eissn=1478-7083&rft_id=info:doi/10.1308/RCSANN.2020.0139&rft_dat=%3Cproquest_pubme%3E2499983530%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499983530&rft_id=info:pmid/32538121&rfr_iscdi=true |