Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering
Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2020-09, Vol.26 (54), p.12338-12342 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12342 |
---|---|
container_issue | 54 |
container_start_page | 12338 |
container_title | Chemistry : a European journal |
container_volume | 26 |
creator | Drienovská, Ivana Gajdoš, Matúš Kindler, Alexia Takhtehchian, Mahsa Darnhofer, Barbara Birner‐Gruenberger, Ruth Dörr, Mark Bornscheuer, Uwe T. Kourist, Robert |
description | Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate.
In enzyme engineering using an expanded genetical code, quick identification of fully translated and correctly folded variants is crucial. Herein, we report the engineering of the aryl esterase from Pseudomonas fluorescens utilizing a pool of ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, allowing for quick identification of interesting variants. |
doi_str_mv | 10.1002/chem.202002077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7590180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396304634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5057-a42d1fb96bd2aadbdcb2a6e79ee3a709c179aa13667000f781ab889005db34d3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPLliWyxKabDP5J4niDNJrOtJUK3XRv3TjO1FViBzspDCsegAXPyJPg0QzDz4bVtXy_e3TPPQi9omROCWFv9b3p54yw9CZCPEEzWjCacVEWT9GMyFxkZcHlCXoR4wMhRJacP0cnnPFclETO0Le17xrrNngRo4mxN27EvsXXTvsw-ACj9W738cE7Dc47q6HDi946jxfaNhGvQdvOjjCaiFefB3DxMLGenN5NQ_fj6_fL4KcBX9hHE6Idt7j1Aa_cl21vUtlYZ0xIS5yhZy100bw81FN0t17dLa-ym9vL6-XiJtMFKUQGOWtoW8uybhhAUze6ZlAaIY3hIIjUVEgAystSJMutqCjUVSUJKZqa5w0_Re_2ssNU96bRyXOATg3B9hC2yoNVf3ecvVcb_6hEIQmtSBI4PwgE_3EycVS9jdp0HTjjp6gYT3cmecnzhL75B33wU0hHSVSeF5VgrGKJmu8pHXyMwbTHZShRu5zVLmd1zDkNvP7TwhH_FWwC5B74ZDuz_Y-cWl6t3v8W_wmBKrlY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445872282</pqid></control><display><type>article</type><title>Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Drienovská, Ivana ; Gajdoš, Matúš ; Kindler, Alexia ; Takhtehchian, Mahsa ; Darnhofer, Barbara ; Birner‐Gruenberger, Ruth ; Dörr, Mark ; Bornscheuer, Uwe T. ; Kourist, Robert</creator><creatorcontrib>Drienovská, Ivana ; Gajdoš, Matúš ; Kindler, Alexia ; Takhtehchian, Mahsa ; Darnhofer, Barbara ; Birner‐Gruenberger, Ruth ; Dörr, Mark ; Bornscheuer, Uwe T. ; Kourist, Robert</creatorcontrib><description>Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate.
In enzyme engineering using an expanded genetical code, quick identification of fully translated and correctly folded variants is crucial. Herein, we report the engineering of the aryl esterase from Pseudomonas fluorescens utilizing a pool of ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, allowing for quick identification of interesting variants.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202002077</identifier><identifier>PMID: 32347609</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amino Acids ; biocatalysis ; Catalysis ; Chemistry ; Communication ; Communications ; Enantiomers ; enzyme expression ; Enzymes ; Esterase ; Esterases - chemistry ; Esterases - metabolism ; Fluorescence ; Functional groups ; Identification keys ; noncanonical amino acids ; Phenylbutyric acid ; Protein Engineering ; Proteins ; pseudomonas fluorescens esterase</subject><ispartof>Chemistry : a European journal, 2020-09, Vol.26 (54), p.12338-12342</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020 The Authors. Published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5057-a42d1fb96bd2aadbdcb2a6e79ee3a709c179aa13667000f781ab889005db34d3</citedby><cites>FETCH-LOGICAL-c5057-a42d1fb96bd2aadbdcb2a6e79ee3a709c179aa13667000f781ab889005db34d3</cites><orcidid>0000-0003-0685-2696 ; 0000-0002-2853-3525 ; 0000-0003-1715-4236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202002077$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202002077$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32347609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drienovská, Ivana</creatorcontrib><creatorcontrib>Gajdoš, Matúš</creatorcontrib><creatorcontrib>Kindler, Alexia</creatorcontrib><creatorcontrib>Takhtehchian, Mahsa</creatorcontrib><creatorcontrib>Darnhofer, Barbara</creatorcontrib><creatorcontrib>Birner‐Gruenberger, Ruth</creatorcontrib><creatorcontrib>Dörr, Mark</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><creatorcontrib>Kourist, Robert</creatorcontrib><title>Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate.
In enzyme engineering using an expanded genetical code, quick identification of fully translated and correctly folded variants is crucial. Herein, we report the engineering of the aryl esterase from Pseudomonas fluorescens utilizing a pool of ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, allowing for quick identification of interesting variants.</description><subject>Amino Acids</subject><subject>biocatalysis</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Communication</subject><subject>Communications</subject><subject>Enantiomers</subject><subject>enzyme expression</subject><subject>Enzymes</subject><subject>Esterase</subject><subject>Esterases - chemistry</subject><subject>Esterases - metabolism</subject><subject>Fluorescence</subject><subject>Functional groups</subject><subject>Identification keys</subject><subject>noncanonical amino acids</subject><subject>Phenylbutyric acid</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>pseudomonas fluorescens esterase</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokPLliWyxKabDP5J4niDNJrOtJUK3XRv3TjO1FViBzspDCsegAXPyJPg0QzDz4bVtXy_e3TPPQi9omROCWFv9b3p54yw9CZCPEEzWjCacVEWT9GMyFxkZcHlCXoR4wMhRJacP0cnnPFclETO0Le17xrrNngRo4mxN27EvsXXTvsw-ACj9W738cE7Dc47q6HDi946jxfaNhGvQdvOjjCaiFefB3DxMLGenN5NQ_fj6_fL4KcBX9hHE6Idt7j1Aa_cl21vUtlYZ0xIS5yhZy100bw81FN0t17dLa-ym9vL6-XiJtMFKUQGOWtoW8uybhhAUze6ZlAaIY3hIIjUVEgAystSJMutqCjUVSUJKZqa5w0_Re_2ssNU96bRyXOATg3B9hC2yoNVf3ecvVcb_6hEIQmtSBI4PwgE_3EycVS9jdp0HTjjp6gYT3cmecnzhL75B33wU0hHSVSeF5VgrGKJmu8pHXyMwbTHZShRu5zVLmd1zDkNvP7TwhH_FWwC5B74ZDuz_Y-cWl6t3v8W_wmBKrlY</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>Drienovská, Ivana</creator><creator>Gajdoš, Matúš</creator><creator>Kindler, Alexia</creator><creator>Takhtehchian, Mahsa</creator><creator>Darnhofer, Barbara</creator><creator>Birner‐Gruenberger, Ruth</creator><creator>Dörr, Mark</creator><creator>Bornscheuer, Uwe T.</creator><creator>Kourist, Robert</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid><orcidid>https://orcid.org/0000-0002-2853-3525</orcidid><orcidid>https://orcid.org/0000-0003-1715-4236</orcidid></search><sort><creationdate>20200925</creationdate><title>Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering</title><author>Drienovská, Ivana ; Gajdoš, Matúš ; Kindler, Alexia ; Takhtehchian, Mahsa ; Darnhofer, Barbara ; Birner‐Gruenberger, Ruth ; Dörr, Mark ; Bornscheuer, Uwe T. ; Kourist, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5057-a42d1fb96bd2aadbdcb2a6e79ee3a709c179aa13667000f781ab889005db34d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino Acids</topic><topic>biocatalysis</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Communication</topic><topic>Communications</topic><topic>Enantiomers</topic><topic>enzyme expression</topic><topic>Enzymes</topic><topic>Esterase</topic><topic>Esterases - chemistry</topic><topic>Esterases - metabolism</topic><topic>Fluorescence</topic><topic>Functional groups</topic><topic>Identification keys</topic><topic>noncanonical amino acids</topic><topic>Phenylbutyric acid</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>pseudomonas fluorescens esterase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drienovská, Ivana</creatorcontrib><creatorcontrib>Gajdoš, Matúš</creatorcontrib><creatorcontrib>Kindler, Alexia</creatorcontrib><creatorcontrib>Takhtehchian, Mahsa</creatorcontrib><creatorcontrib>Darnhofer, Barbara</creatorcontrib><creatorcontrib>Birner‐Gruenberger, Ruth</creatorcontrib><creatorcontrib>Dörr, Mark</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><creatorcontrib>Kourist, Robert</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drienovská, Ivana</au><au>Gajdoš, Matúš</au><au>Kindler, Alexia</au><au>Takhtehchian, Mahsa</au><au>Darnhofer, Barbara</au><au>Birner‐Gruenberger, Ruth</au><au>Dörr, Mark</au><au>Bornscheuer, Uwe T.</au><au>Kourist, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-09-25</date><risdate>2020</risdate><volume>26</volume><issue>54</issue><spage>12338</spage><epage>12342</epage><pages>12338-12342</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate.
In enzyme engineering using an expanded genetical code, quick identification of fully translated and correctly folded variants is crucial. Herein, we report the engineering of the aryl esterase from Pseudomonas fluorescens utilizing a pool of ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, allowing for quick identification of interesting variants.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32347609</pmid><doi>10.1002/chem.202002077</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid><orcidid>https://orcid.org/0000-0002-2853-3525</orcidid><orcidid>https://orcid.org/0000-0003-1715-4236</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2020-09, Vol.26 (54), p.12338-12342 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7590180 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amino Acids biocatalysis Catalysis Chemistry Communication Communications Enantiomers enzyme expression Enzymes Esterase Esterases - chemistry Esterases - metabolism Fluorescence Functional groups Identification keys noncanonical amino acids Phenylbutyric acid Protein Engineering Proteins pseudomonas fluorescens esterase |
title | Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding%20Assessment%20of%20Incorporation%20of%20Noncanonical%20Amino%20Acids%20Facilitates%20Expansion%20of%20Functional%E2%80%90Group%20Diversity%20for%20Enzyme%20Engineering&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Drienovsk%C3%A1,%20Ivana&rft.date=2020-09-25&rft.volume=26&rft.issue=54&rft.spage=12338&rft.epage=12342&rft.pages=12338-12342&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202002077&rft_dat=%3Cproquest_pubme%3E2396304634%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445872282&rft_id=info:pmid/32347609&rfr_iscdi=true |