Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering

Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2020-09, Vol.26 (54), p.12338-12342
Hauptverfasser: Drienovská, Ivana, Gajdoš, Matúš, Kindler, Alexia, Takhtehchian, Mahsa, Darnhofer, Barbara, Birner‐Gruenberger, Ruth, Dörr, Mark, Bornscheuer, Uwe T., Kourist, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12342
container_issue 54
container_start_page 12338
container_title Chemistry : a European journal
container_volume 26
creator Drienovská, Ivana
Gajdoš, Matúš
Kindler, Alexia
Takhtehchian, Mahsa
Darnhofer, Barbara
Birner‐Gruenberger, Ruth
Dörr, Mark
Bornscheuer, Uwe T.
Kourist, Robert
description Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate. In enzyme engineering using an expanded genetical code, quick identification of fully translated and correctly folded variants is crucial. Herein, we report the engineering of the aryl esterase from Pseudomonas fluorescens utilizing a pool of ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, allowing for quick identification of interesting variants.
doi_str_mv 10.1002/chem.202002077
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7590180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2396304634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5057-a42d1fb96bd2aadbdcb2a6e79ee3a709c179aa13667000f781ab889005db34d3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPLliWyxKabDP5J4niDNJrOtJUK3XRv3TjO1FViBzspDCsegAXPyJPg0QzDz4bVtXy_e3TPPQi9omROCWFv9b3p54yw9CZCPEEzWjCacVEWT9GMyFxkZcHlCXoR4wMhRJacP0cnnPFclETO0Le17xrrNngRo4mxN27EvsXXTvsw-ACj9W738cE7Dc47q6HDi946jxfaNhGvQdvOjjCaiFefB3DxMLGenN5NQ_fj6_fL4KcBX9hHE6Idt7j1Aa_cl21vUtlYZ0xIS5yhZy100bw81FN0t17dLa-ym9vL6-XiJtMFKUQGOWtoW8uybhhAUze6ZlAaIY3hIIjUVEgAystSJMutqCjUVSUJKZqa5w0_Re_2ssNU96bRyXOATg3B9hC2yoNVf3ecvVcb_6hEIQmtSBI4PwgE_3EycVS9jdp0HTjjp6gYT3cmecnzhL75B33wU0hHSVSeF5VgrGKJmu8pHXyMwbTHZShRu5zVLmd1zDkNvP7TwhH_FWwC5B74ZDuz_Y-cWl6t3v8W_wmBKrlY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2445872282</pqid></control><display><type>article</type><title>Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Drienovská, Ivana ; Gajdoš, Matúš ; Kindler, Alexia ; Takhtehchian, Mahsa ; Darnhofer, Barbara ; Birner‐Gruenberger, Ruth ; Dörr, Mark ; Bornscheuer, Uwe T. ; Kourist, Robert</creator><creatorcontrib>Drienovská, Ivana ; Gajdoš, Matúš ; Kindler, Alexia ; Takhtehchian, Mahsa ; Darnhofer, Barbara ; Birner‐Gruenberger, Ruth ; Dörr, Mark ; Bornscheuer, Uwe T. ; Kourist, Robert</creatorcontrib><description>Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate. In enzyme engineering using an expanded genetical code, quick identification of fully translated and correctly folded variants is crucial. Herein, we report the engineering of the aryl esterase from Pseudomonas fluorescens utilizing a pool of ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, allowing for quick identification of interesting variants.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202002077</identifier><identifier>PMID: 32347609</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amino Acids ; biocatalysis ; Catalysis ; Chemistry ; Communication ; Communications ; Enantiomers ; enzyme expression ; Enzymes ; Esterase ; Esterases - chemistry ; Esterases - metabolism ; Fluorescence ; Functional groups ; Identification keys ; noncanonical amino acids ; Phenylbutyric acid ; Protein Engineering ; Proteins ; pseudomonas fluorescens esterase</subject><ispartof>Chemistry : a European journal, 2020-09, Vol.26 (54), p.12338-12342</ispartof><rights>2020 The Authors. Published by Wiley-VCH GmbH</rights><rights>2020 The Authors. Published by Wiley-VCH GmbH.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5057-a42d1fb96bd2aadbdcb2a6e79ee3a709c179aa13667000f781ab889005db34d3</citedby><cites>FETCH-LOGICAL-c5057-a42d1fb96bd2aadbdcb2a6e79ee3a709c179aa13667000f781ab889005db34d3</cites><orcidid>0000-0003-0685-2696 ; 0000-0002-2853-3525 ; 0000-0003-1715-4236</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202002077$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202002077$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32347609$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drienovská, Ivana</creatorcontrib><creatorcontrib>Gajdoš, Matúš</creatorcontrib><creatorcontrib>Kindler, Alexia</creatorcontrib><creatorcontrib>Takhtehchian, Mahsa</creatorcontrib><creatorcontrib>Darnhofer, Barbara</creatorcontrib><creatorcontrib>Birner‐Gruenberger, Ruth</creatorcontrib><creatorcontrib>Dörr, Mark</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><creatorcontrib>Kourist, Robert</creatorcontrib><title>Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate. In enzyme engineering using an expanded genetical code, quick identification of fully translated and correctly folded variants is crucial. Herein, we report the engineering of the aryl esterase from Pseudomonas fluorescens utilizing a pool of ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, allowing for quick identification of interesting variants.</description><subject>Amino Acids</subject><subject>biocatalysis</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Communication</subject><subject>Communications</subject><subject>Enantiomers</subject><subject>enzyme expression</subject><subject>Enzymes</subject><subject>Esterase</subject><subject>Esterases - chemistry</subject><subject>Esterases - metabolism</subject><subject>Fluorescence</subject><subject>Functional groups</subject><subject>Identification keys</subject><subject>noncanonical amino acids</subject><subject>Phenylbutyric acid</subject><subject>Protein Engineering</subject><subject>Proteins</subject><subject>pseudomonas fluorescens esterase</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokPLliWyxKabDP5J4niDNJrOtJUK3XRv3TjO1FViBzspDCsegAXPyJPg0QzDz4bVtXy_e3TPPQi9omROCWFv9b3p54yw9CZCPEEzWjCacVEWT9GMyFxkZcHlCXoR4wMhRJacP0cnnPFclETO0Le17xrrNngRo4mxN27EvsXXTvsw-ACj9W738cE7Dc47q6HDi946jxfaNhGvQdvOjjCaiFefB3DxMLGenN5NQ_fj6_fL4KcBX9hHE6Idt7j1Aa_cl21vUtlYZ0xIS5yhZy100bw81FN0t17dLa-ym9vL6-XiJtMFKUQGOWtoW8uybhhAUze6ZlAaIY3hIIjUVEgAystSJMutqCjUVSUJKZqa5w0_Re_2ssNU96bRyXOATg3B9hC2yoNVf3ecvVcb_6hEIQmtSBI4PwgE_3EycVS9jdp0HTjjp6gYT3cmecnzhL75B33wU0hHSVSeF5VgrGKJmu8pHXyMwbTHZShRu5zVLmd1zDkNvP7TwhH_FWwC5B74ZDuz_Y-cWl6t3v8W_wmBKrlY</recordid><startdate>20200925</startdate><enddate>20200925</enddate><creator>Drienovská, Ivana</creator><creator>Gajdoš, Matúš</creator><creator>Kindler, Alexia</creator><creator>Takhtehchian, Mahsa</creator><creator>Darnhofer, Barbara</creator><creator>Birner‐Gruenberger, Ruth</creator><creator>Dörr, Mark</creator><creator>Bornscheuer, Uwe T.</creator><creator>Kourist, Robert</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid><orcidid>https://orcid.org/0000-0002-2853-3525</orcidid><orcidid>https://orcid.org/0000-0003-1715-4236</orcidid></search><sort><creationdate>20200925</creationdate><title>Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering</title><author>Drienovská, Ivana ; Gajdoš, Matúš ; Kindler, Alexia ; Takhtehchian, Mahsa ; Darnhofer, Barbara ; Birner‐Gruenberger, Ruth ; Dörr, Mark ; Bornscheuer, Uwe T. ; Kourist, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5057-a42d1fb96bd2aadbdcb2a6e79ee3a709c179aa13667000f781ab889005db34d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amino Acids</topic><topic>biocatalysis</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Communication</topic><topic>Communications</topic><topic>Enantiomers</topic><topic>enzyme expression</topic><topic>Enzymes</topic><topic>Esterase</topic><topic>Esterases - chemistry</topic><topic>Esterases - metabolism</topic><topic>Fluorescence</topic><topic>Functional groups</topic><topic>Identification keys</topic><topic>noncanonical amino acids</topic><topic>Phenylbutyric acid</topic><topic>Protein Engineering</topic><topic>Proteins</topic><topic>pseudomonas fluorescens esterase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drienovská, Ivana</creatorcontrib><creatorcontrib>Gajdoš, Matúš</creatorcontrib><creatorcontrib>Kindler, Alexia</creatorcontrib><creatorcontrib>Takhtehchian, Mahsa</creatorcontrib><creatorcontrib>Darnhofer, Barbara</creatorcontrib><creatorcontrib>Birner‐Gruenberger, Ruth</creatorcontrib><creatorcontrib>Dörr, Mark</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><creatorcontrib>Kourist, Robert</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drienovská, Ivana</au><au>Gajdoš, Matúš</au><au>Kindler, Alexia</au><au>Takhtehchian, Mahsa</au><au>Darnhofer, Barbara</au><au>Birner‐Gruenberger, Ruth</au><au>Dörr, Mark</au><au>Bornscheuer, Uwe T.</au><au>Kourist, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2020-09-25</date><risdate>2020</risdate><volume>26</volume><issue>54</issue><spage>12338</spage><epage>12342</epage><pages>12338-12342</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Protein design is limited by the diversity of functional groups provided by the canonical protein „building blocks“. Incorporating noncanonical amino acids (ncAAs) into enzymes enables a dramatic expansion of their catalytic features. For this, quick identification of fully translated and correctly folded variants is decisive. Herein, we report the engineering of the enantioselectivity of an esterase utilizing several ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, which is crucial as it allows simple determination of the expression levels of enzyme variants with ncAA incorporations by fluorescence. Several identified variants led to improved enantioselectivity or even inverted enantiopreference in the kinetic resolution of ethyl 3‐phenylbutyrate. In enzyme engineering using an expanded genetical code, quick identification of fully translated and correctly folded variants is crucial. Herein, we report the engineering of the aryl esterase from Pseudomonas fluorescens utilizing a pool of ncAAs. Key for the identification of active and soluble protein variants was the use of the split‐GFP method, allowing for quick identification of interesting variants.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32347609</pmid><doi>10.1002/chem.202002077</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid><orcidid>https://orcid.org/0000-0002-2853-3525</orcidid><orcidid>https://orcid.org/0000-0003-1715-4236</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2020-09, Vol.26 (54), p.12338-12342
issn 0947-6539
1521-3765
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7590180
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Amino Acids
biocatalysis
Catalysis
Chemistry
Communication
Communications
Enantiomers
enzyme expression
Enzymes
Esterase
Esterases - chemistry
Esterases - metabolism
Fluorescence
Functional groups
Identification keys
noncanonical amino acids
Phenylbutyric acid
Protein Engineering
Proteins
pseudomonas fluorescens esterase
title Folding Assessment of Incorporation of Noncanonical Amino Acids Facilitates Expansion of Functional‐Group Diversity for Enzyme Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T01%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding%20Assessment%20of%20Incorporation%20of%20Noncanonical%20Amino%20Acids%20Facilitates%20Expansion%20of%20Functional%E2%80%90Group%20Diversity%20for%20Enzyme%20Engineering&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Drienovsk%C3%A1,%20Ivana&rft.date=2020-09-25&rft.volume=26&rft.issue=54&rft.spage=12338&rft.epage=12342&rft.pages=12338-12342&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202002077&rft_dat=%3Cproquest_pubme%3E2396304634%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2445872282&rft_id=info:pmid/32347609&rfr_iscdi=true