Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse
Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC)...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-10, Vol.21 (20), p.7461 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 7461 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Berezhnov, Alexey V. Fedotova, Evgeniya I. Nenov, Miroslav N. Kasymov, Vitaly A. Pimenov, Oleg Yu Dynnik, Vladimir V. |
description | Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC) can induce cytosolic Ca2+ accumulation, implicating L-type calcium channels, Na+/Ca2+ exchanger, and Ca2+-release from sarcoplasmic reticulum (SR). Alternatively, PC can evoke dissipation of mitochondrial potential (ΔΨm) and mitochondrial permeability transition pore (mPTP). Here, to dissect the complex nature of PC action on Ca2+ homeostasis and oxidative phosphorylation (OXPHOS) in cardiomyocytes and mitochondria, the methods of fluorescent microscopy, perforated path-clamp, and mitochondrial assays were used. We found that LCAC in dose-dependent manner can evoke Ca2+-sparks and oscillations, long-living Ca2+ enriched microdomains, and, finally, Ca2+ overload leading to hypercontracture and cardiomyocyte death. Collectively, PC-driven cardiotoxicity involves: (I) redistribution of Ca2+ from SR to mitochondria with minimal contribution of external calcium influx; (II) irreversible inhibition of Krebs cycle and OXPHOS underlying limited mitochondrial Ca2+ buffering; (III) induction of mPTP reinforced by PC-calcium interplay; (IV) activation of Ca2+-dependent phospholipases cPLA2 and PLC. Based on the inhibitory analysis we may suggest that simultaneous inhibition of both phospholipases could be an effective strategy for protection against PC-mediated toxicity in cardiomyocytes. |
doi_str_mv | 10.3390/ijms21207461 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7589681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548668044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e246002764ab374613fac8c572bc0cf283ba325e5e066990a91e6247c30657c93</originalsourceid><addsrcrecordid>eNpVkcFu1DAQhiMEoqVw4wEscaQBx06chANSlS0UaSs4wDmaOJPNrBw72M6q-4i8FVlthcrJI_mbb0b_JMnbjH-QsuYfaT8FkQle5ip7llxmuRAp56p8_qS-SF6FsOdcSFHUL5MLKXnB8yy_TP5sKATUkeyONWjMYsCze9QjWApTYG5gW2d3aTMCWXajj0aDt7TyGNKNpwNa1oDvyUX3QJri8RNblXHxHViNp_4GjKZlYnduQhciBArXqynSASI5e0bE-3SDM9oebWQ_Rhfm0RmaIeAKg-3ZPUWnR2d7T2DYrUW_w0g6sMYZA3PA18mLAUzAN4_vVfLry-3P5i7dfv_6rbnZplpmdUxR5GoNolQ5dPKUmRxAV7ooRae5HkQlO1hTwgK5UnXNoc5QibzUkqui1LW8Sj6fvfPSTdjrdWEPpp09TeCPrQNq__-xNLY7d2jLoqpVla2Cd48C734vGGK7d4u3686tKPJKqYrn-UpdnyntXQgeh38TMt6eDt8-Pbz8CxlGpHI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548668044</pqid></control><display><type>article</type><title>Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Berezhnov, Alexey V. ; Fedotova, Evgeniya I. ; Nenov, Miroslav N. ; Kasymov, Vitaly A. ; Pimenov, Oleg Yu ; Dynnik, Vladimir V.</creator><creatorcontrib>Berezhnov, Alexey V. ; Fedotova, Evgeniya I. ; Nenov, Miroslav N. ; Kasymov, Vitaly A. ; Pimenov, Oleg Yu ; Dynnik, Vladimir V.</creatorcontrib><description>Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC) can induce cytosolic Ca2+ accumulation, implicating L-type calcium channels, Na+/Ca2+ exchanger, and Ca2+-release from sarcoplasmic reticulum (SR). Alternatively, PC can evoke dissipation of mitochondrial potential (ΔΨm) and mitochondrial permeability transition pore (mPTP). Here, to dissect the complex nature of PC action on Ca2+ homeostasis and oxidative phosphorylation (OXPHOS) in cardiomyocytes and mitochondria, the methods of fluorescent microscopy, perforated path-clamp, and mitochondrial assays were used. We found that LCAC in dose-dependent manner can evoke Ca2+-sparks and oscillations, long-living Ca2+ enriched microdomains, and, finally, Ca2+ overload leading to hypercontracture and cardiomyocyte death. Collectively, PC-driven cardiotoxicity involves: (I) redistribution of Ca2+ from SR to mitochondria with minimal contribution of external calcium influx; (II) irreversible inhibition of Krebs cycle and OXPHOS underlying limited mitochondrial Ca2+ buffering; (III) induction of mPTP reinforced by PC-calcium interplay; (IV) activation of Ca2+-dependent phospholipases cPLA2 and PLC. Based on the inhibitory analysis we may suggest that simultaneous inhibition of both phospholipases could be an effective strategy for protection against PC-mediated toxicity in cardiomyocytes.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21207461</identifier><identifier>PMID: 33050414</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Calcium (mitochondrial) ; Calcium (reticular) ; Calcium buffering ; Calcium channels ; Calcium channels (L-type) ; Calcium homeostasis ; Calcium influx ; Calcium ions ; Calcium signalling ; Cardiac muscle ; Cardiomyocytes ; Cardiotoxicity ; Fatty acids ; Fluorescence ; Homeostasis ; Ischemia ; Krebs cycle ; Membrane permeability ; Mitochondria ; Mitochondrial permeability transition pore ; Molecular chains ; Molecular modelling ; Na+/Ca2+ exchanger ; Oxidative phosphorylation ; Permeability ; Phosphorylation ; Reperfusion ; Respiration ; Sarcoplasmic reticulum ; Tricarboxylic acid cycle</subject><ispartof>International journal of molecular sciences, 2020-10, Vol.21 (20), p.7461</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e246002764ab374613fac8c572bc0cf283ba325e5e066990a91e6247c30657c93</citedby><cites>FETCH-LOGICAL-c319t-e246002764ab374613fac8c572bc0cf283ba325e5e066990a91e6247c30657c93</cites><orcidid>0000-0003-0271-6179 ; 0000-0001-9543-9259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589681/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7589681/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Berezhnov, Alexey V.</creatorcontrib><creatorcontrib>Fedotova, Evgeniya I.</creatorcontrib><creatorcontrib>Nenov, Miroslav N.</creatorcontrib><creatorcontrib>Kasymov, Vitaly A.</creatorcontrib><creatorcontrib>Pimenov, Oleg Yu</creatorcontrib><creatorcontrib>Dynnik, Vladimir V.</creatorcontrib><title>Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse</title><title>International journal of molecular sciences</title><description>Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC) can induce cytosolic Ca2+ accumulation, implicating L-type calcium channels, Na+/Ca2+ exchanger, and Ca2+-release from sarcoplasmic reticulum (SR). Alternatively, PC can evoke dissipation of mitochondrial potential (ΔΨm) and mitochondrial permeability transition pore (mPTP). Here, to dissect the complex nature of PC action on Ca2+ homeostasis and oxidative phosphorylation (OXPHOS) in cardiomyocytes and mitochondria, the methods of fluorescent microscopy, perforated path-clamp, and mitochondrial assays were used. We found that LCAC in dose-dependent manner can evoke Ca2+-sparks and oscillations, long-living Ca2+ enriched microdomains, and, finally, Ca2+ overload leading to hypercontracture and cardiomyocyte death. Collectively, PC-driven cardiotoxicity involves: (I) redistribution of Ca2+ from SR to mitochondria with minimal contribution of external calcium influx; (II) irreversible inhibition of Krebs cycle and OXPHOS underlying limited mitochondrial Ca2+ buffering; (III) induction of mPTP reinforced by PC-calcium interplay; (IV) activation of Ca2+-dependent phospholipases cPLA2 and PLC. Based on the inhibitory analysis we may suggest that simultaneous inhibition of both phospholipases could be an effective strategy for protection against PC-mediated toxicity in cardiomyocytes.</description><subject>Calcium (mitochondrial)</subject><subject>Calcium (reticular)</subject><subject>Calcium buffering</subject><subject>Calcium channels</subject><subject>Calcium channels (L-type)</subject><subject>Calcium homeostasis</subject><subject>Calcium influx</subject><subject>Calcium ions</subject><subject>Calcium signalling</subject><subject>Cardiac muscle</subject><subject>Cardiomyocytes</subject><subject>Cardiotoxicity</subject><subject>Fatty acids</subject><subject>Fluorescence</subject><subject>Homeostasis</subject><subject>Ischemia</subject><subject>Krebs cycle</subject><subject>Membrane permeability</subject><subject>Mitochondria</subject><subject>Mitochondrial permeability transition pore</subject><subject>Molecular chains</subject><subject>Molecular modelling</subject><subject>Na+/Ca2+ exchanger</subject><subject>Oxidative phosphorylation</subject><subject>Permeability</subject><subject>Phosphorylation</subject><subject>Reperfusion</subject><subject>Respiration</subject><subject>Sarcoplasmic reticulum</subject><subject>Tricarboxylic acid cycle</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkcFu1DAQhiMEoqVw4wEscaQBx06chANSlS0UaSs4wDmaOJPNrBw72M6q-4i8FVlthcrJI_mbb0b_JMnbjH-QsuYfaT8FkQle5ip7llxmuRAp56p8_qS-SF6FsOdcSFHUL5MLKXnB8yy_TP5sKATUkeyONWjMYsCze9QjWApTYG5gW2d3aTMCWXajj0aDt7TyGNKNpwNa1oDvyUX3QJri8RNblXHxHViNp_4GjKZlYnduQhciBArXqynSASI5e0bE-3SDM9oebWQ_Rhfm0RmaIeAKg-3ZPUWnR2d7T2DYrUW_w0g6sMYZA3PA18mLAUzAN4_vVfLry-3P5i7dfv_6rbnZplpmdUxR5GoNolQ5dPKUmRxAV7ooRae5HkQlO1hTwgK5UnXNoc5QibzUkqui1LW8Sj6fvfPSTdjrdWEPpp09TeCPrQNq__-xNLY7d2jLoqpVla2Cd48C734vGGK7d4u3686tKPJKqYrn-UpdnyntXQgeh38TMt6eDt8-Pbz8CxlGpHI</recordid><startdate>20201010</startdate><enddate>20201010</enddate><creator>Berezhnov, Alexey V.</creator><creator>Fedotova, Evgeniya I.</creator><creator>Nenov, Miroslav N.</creator><creator>Kasymov, Vitaly A.</creator><creator>Pimenov, Oleg Yu</creator><creator>Dynnik, Vladimir V.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0271-6179</orcidid><orcidid>https://orcid.org/0000-0001-9543-9259</orcidid></search><sort><creationdate>20201010</creationdate><title>Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse</title><author>Berezhnov, Alexey V. ; Fedotova, Evgeniya I. ; Nenov, Miroslav N. ; Kasymov, Vitaly A. ; Pimenov, Oleg Yu ; Dynnik, Vladimir V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e246002764ab374613fac8c572bc0cf283ba325e5e066990a91e6247c30657c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Calcium (mitochondrial)</topic><topic>Calcium (reticular)</topic><topic>Calcium buffering</topic><topic>Calcium channels</topic><topic>Calcium channels (L-type)</topic><topic>Calcium homeostasis</topic><topic>Calcium influx</topic><topic>Calcium ions</topic><topic>Calcium signalling</topic><topic>Cardiac muscle</topic><topic>Cardiomyocytes</topic><topic>Cardiotoxicity</topic><topic>Fatty acids</topic><topic>Fluorescence</topic><topic>Homeostasis</topic><topic>Ischemia</topic><topic>Krebs cycle</topic><topic>Membrane permeability</topic><topic>Mitochondria</topic><topic>Mitochondrial permeability transition pore</topic><topic>Molecular chains</topic><topic>Molecular modelling</topic><topic>Na+/Ca2+ exchanger</topic><topic>Oxidative phosphorylation</topic><topic>Permeability</topic><topic>Phosphorylation</topic><topic>Reperfusion</topic><topic>Respiration</topic><topic>Sarcoplasmic reticulum</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berezhnov, Alexey V.</creatorcontrib><creatorcontrib>Fedotova, Evgeniya I.</creatorcontrib><creatorcontrib>Nenov, Miroslav N.</creatorcontrib><creatorcontrib>Kasymov, Vitaly A.</creatorcontrib><creatorcontrib>Pimenov, Oleg Yu</creatorcontrib><creatorcontrib>Dynnik, Vladimir V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berezhnov, Alexey V.</au><au>Fedotova, Evgeniya I.</au><au>Nenov, Miroslav N.</au><au>Kasymov, Vitaly A.</au><au>Pimenov, Oleg Yu</au><au>Dynnik, Vladimir V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse</atitle><jtitle>International journal of molecular sciences</jtitle><date>2020-10-10</date><risdate>2020</risdate><volume>21</volume><issue>20</issue><spage>7461</spage><pages>7461-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC) can induce cytosolic Ca2+ accumulation, implicating L-type calcium channels, Na+/Ca2+ exchanger, and Ca2+-release from sarcoplasmic reticulum (SR). Alternatively, PC can evoke dissipation of mitochondrial potential (ΔΨm) and mitochondrial permeability transition pore (mPTP). Here, to dissect the complex nature of PC action on Ca2+ homeostasis and oxidative phosphorylation (OXPHOS) in cardiomyocytes and mitochondria, the methods of fluorescent microscopy, perforated path-clamp, and mitochondrial assays were used. We found that LCAC in dose-dependent manner can evoke Ca2+-sparks and oscillations, long-living Ca2+ enriched microdomains, and, finally, Ca2+ overload leading to hypercontracture and cardiomyocyte death. Collectively, PC-driven cardiotoxicity involves: (I) redistribution of Ca2+ from SR to mitochondria with minimal contribution of external calcium influx; (II) irreversible inhibition of Krebs cycle and OXPHOS underlying limited mitochondrial Ca2+ buffering; (III) induction of mPTP reinforced by PC-calcium interplay; (IV) activation of Ca2+-dependent phospholipases cPLA2 and PLC. Based on the inhibitory analysis we may suggest that simultaneous inhibition of both phospholipases could be an effective strategy for protection against PC-mediated toxicity in cardiomyocytes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>33050414</pmid><doi>10.3390/ijms21207461</doi><orcidid>https://orcid.org/0000-0003-0271-6179</orcidid><orcidid>https://orcid.org/0000-0001-9543-9259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-10, Vol.21 (20), p.7461 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7589681 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Calcium (mitochondrial) Calcium (reticular) Calcium buffering Calcium channels Calcium channels (L-type) Calcium homeostasis Calcium influx Calcium ions Calcium signalling Cardiac muscle Cardiomyocytes Cardiotoxicity Fatty acids Fluorescence Homeostasis Ischemia Krebs cycle Membrane permeability Mitochondria Mitochondrial permeability transition pore Molecular chains Molecular modelling Na+/Ca2+ exchanger Oxidative phosphorylation Permeability Phosphorylation Reperfusion Respiration Sarcoplasmic reticulum Tricarboxylic acid cycle |
title | Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T17%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20Cellular%20Mechanisms%20of%20Long-Chain%20Acylcarnitines-Driven%20Cardiotoxicity:%20Disturbance%20of%20Calcium%20Homeostasis,%20Activation%20of%20Ca2+-Dependent%20Phospholipases,%20and%20Mitochondrial%20Energetics%20Collapse&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Berezhnov,%20Alexey%20V.&rft.date=2020-10-10&rft.volume=21&rft.issue=20&rft.spage=7461&rft.pages=7461-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21207461&rft_dat=%3Cproquest_pubme%3E2548668044%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548668044&rft_id=info:pmid/33050414&rfr_iscdi=true |