Influence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework

In catalysts for CO2 hydrogenation, the interface between metal nanoparticles (NPs) and the support material is of high importance for the activity and reaction selectivity. In Pt NP-containing UiO Zr-metal–organic frameworks (MOFs), key intermediates in methanol formation are adsorbed at open Zr-si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2020-10, Vol.142 (40), p.17105-17118
Hauptverfasser: Gutterød, Emil Sebastian, Pulumati, Sri Harsha, Kaur, Gurpreet, Lazzarini, Andrea, Solemsli, Bjørn Gading, Gunnæs, Anette Eleonora, Ahoba-Sam, Christian, Kalyva, Maria Evangelou, Sannes, Johnny Andreas, Svelle, Stian, Skúlason, Egill, Nova, Ainara, Olsbye, Unni
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17118
container_issue 40
container_start_page 17105
container_title Journal of the American Chemical Society
container_volume 142
creator Gutterød, Emil Sebastian
Pulumati, Sri Harsha
Kaur, Gurpreet
Lazzarini, Andrea
Solemsli, Bjørn Gading
Gunnæs, Anette Eleonora
Ahoba-Sam, Christian
Kalyva, Maria Evangelou
Sannes, Johnny Andreas
Svelle, Stian
Skúlason, Egill
Nova, Ainara
Olsbye, Unni
description In catalysts for CO2 hydrogenation, the interface between metal nanoparticles (NPs) and the support material is of high importance for the activity and reaction selectivity. In Pt NP-containing UiO Zr-metal–organic frameworks (MOFs), key intermediates in methanol formation are adsorbed at open Zr-sites at the Pt–MOF interface. In this study, we investigate the dynamic role of the Zr-node and the influence of H2O on the CO2 hydrogenation reaction at 170 °C, through steady state and transient isotope exchange experiments, H2O cofeed measurements, and density functional theory (DFT) calculations. The study revealed that an increased number of Zr-node defects increase the formation rates to both methanol and methane. Transient experiments linked the increase to a higher number of surface intermediates for both products. Experiments involving either dehydrated or prehydrated Zr-nodes showed higher methanol and methane formation rates over the dehydrated Zr-node. Transient experiments suggested that the difference is related to competitive adsorption between methanol and water. DFT calculations and microkinetic modeling support this conclusion and give further insight into the equilibria involved in the competitive adsorption process. The calculations revealed weaker adsorption of methanol in defective or dehydrated nodes, in agreement with the larger gas phase concentration of methanol observed experimentally. The microkinetic model shows that [Zr2(μ-O)2]4+ and [Zr2(μ–OH)­(μ-O)­(OH)­(H2O)]4+ are the main surface species when the concentration of water is lower than the number of defect sites. Lastly, although addition of water was found to promote methanol desorption, water does not change the methanol steady state reaction rate, while it has a substantial inhibiting effect on CH4 formation. These results indicate that water can be used to increase the reaction selectivity to methanol and encourages further detailed investigations of the catalyst system.
doi_str_mv 10.1021/jacs.0c07153
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7586342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441613593</sourcerecordid><originalsourceid>FETCH-LOGICAL-a338t-dd9c139c1e6946c09b19cfecbf964bef1ac7435a4d9af68b37fc1316252575213</originalsourceid><addsrcrecordid>eNpVUU1v1DAQtRAVXQo37vjIJcUfsRNfkNCWspVawoGeLceZ7HrJ2ovtFPWC-A_8Q34J3nYl1MNoNDNP783MQ-gNJeeUMPp-a2w6J5Y0VPBnaEEFI5WgTD5HC0IIq5pW8lP0MqVtKWvW0hfolDNFmGrIAv268uM0g7eAw4gvYASbEzZ-wCvW4eBx3gBe3Q8xrMGb7Eqn4JYdwzngG8gb48OEwx1E_DXjL6Xam5idnSBh5_Gt6yrZHIBm-vv7TxfXxjuLL6PZwc8Qv79CJ6OZErw-5jN0e_np23JVXXefr5YfryvDeZurYVCW8hIgVS0tUT1Vtqzaj0rWPYzU2KbmwtSDMqNse96MBU8lE0w0glF-hj488u7nfgeDBZ-jmfQ-up2J9zoYp59OvNvodbjTjSjvq1khePtIYKNL2XntQzSaklYw3dL2QeLdUSKGHzOkrHcuWZgm4yHMSbO6ppJyofh_aLFOb8Mcfbm9kOmDofpgqD4ayv8BbsiSXw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441613593</pqid></control><display><type>article</type><title>Influence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework</title><source>NORA - Norwegian Open Research Archives</source><source>American Chemical Society Journals</source><creator>Gutterød, Emil Sebastian ; Pulumati, Sri Harsha ; Kaur, Gurpreet ; Lazzarini, Andrea ; Solemsli, Bjørn Gading ; Gunnæs, Anette Eleonora ; Ahoba-Sam, Christian ; Kalyva, Maria Evangelou ; Sannes, Johnny Andreas ; Svelle, Stian ; Skúlason, Egill ; Nova, Ainara ; Olsbye, Unni</creator><creatorcontrib>Gutterød, Emil Sebastian ; Pulumati, Sri Harsha ; Kaur, Gurpreet ; Lazzarini, Andrea ; Solemsli, Bjørn Gading ; Gunnæs, Anette Eleonora ; Ahoba-Sam, Christian ; Kalyva, Maria Evangelou ; Sannes, Johnny Andreas ; Svelle, Stian ; Skúlason, Egill ; Nova, Ainara ; Olsbye, Unni</creatorcontrib><description>In catalysts for CO2 hydrogenation, the interface between metal nanoparticles (NPs) and the support material is of high importance for the activity and reaction selectivity. In Pt NP-containing UiO Zr-metal–organic frameworks (MOFs), key intermediates in methanol formation are adsorbed at open Zr-sites at the Pt–MOF interface. In this study, we investigate the dynamic role of the Zr-node and the influence of H2O on the CO2 hydrogenation reaction at 170 °C, through steady state and transient isotope exchange experiments, H2O cofeed measurements, and density functional theory (DFT) calculations. The study revealed that an increased number of Zr-node defects increase the formation rates to both methanol and methane. Transient experiments linked the increase to a higher number of surface intermediates for both products. Experiments involving either dehydrated or prehydrated Zr-nodes showed higher methanol and methane formation rates over the dehydrated Zr-node. Transient experiments suggested that the difference is related to competitive adsorption between methanol and water. DFT calculations and microkinetic modeling support this conclusion and give further insight into the equilibria involved in the competitive adsorption process. The calculations revealed weaker adsorption of methanol in defective or dehydrated nodes, in agreement with the larger gas phase concentration of methanol observed experimentally. The microkinetic model shows that [Zr2(μ-O)2]4+ and [Zr2(μ–OH)­(μ-O)­(OH)­(H2O)]4+ are the main surface species when the concentration of water is lower than the number of defect sites. Lastly, although addition of water was found to promote methanol desorption, water does not change the methanol steady state reaction rate, while it has a substantial inhibiting effect on CH4 formation. These results indicate that water can be used to increase the reaction selectivity to methanol and encourages further detailed investigations of the catalyst system.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.0c07153</identifier><identifier>PMID: 32902970</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2020-10, Vol.142 (40), p.17105-17118</ispartof><rights>info:eu-repo/semantics/openAccess</rights><rights>2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0404-6597 ; 0000-0002-0724-680X ; 0000-0002-7468-5546 ; 0000-0003-3368-7702 ; 0000-0003-3693-2857</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.0c07153$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.0c07153$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,26566,27075,27923,27924,56737,56787</link.rule.ids></links><search><creatorcontrib>Gutterød, Emil Sebastian</creatorcontrib><creatorcontrib>Pulumati, Sri Harsha</creatorcontrib><creatorcontrib>Kaur, Gurpreet</creatorcontrib><creatorcontrib>Lazzarini, Andrea</creatorcontrib><creatorcontrib>Solemsli, Bjørn Gading</creatorcontrib><creatorcontrib>Gunnæs, Anette Eleonora</creatorcontrib><creatorcontrib>Ahoba-Sam, Christian</creatorcontrib><creatorcontrib>Kalyva, Maria Evangelou</creatorcontrib><creatorcontrib>Sannes, Johnny Andreas</creatorcontrib><creatorcontrib>Svelle, Stian</creatorcontrib><creatorcontrib>Skúlason, Egill</creatorcontrib><creatorcontrib>Nova, Ainara</creatorcontrib><creatorcontrib>Olsbye, Unni</creatorcontrib><title>Influence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>In catalysts for CO2 hydrogenation, the interface between metal nanoparticles (NPs) and the support material is of high importance for the activity and reaction selectivity. In Pt NP-containing UiO Zr-metal–organic frameworks (MOFs), key intermediates in methanol formation are adsorbed at open Zr-sites at the Pt–MOF interface. In this study, we investigate the dynamic role of the Zr-node and the influence of H2O on the CO2 hydrogenation reaction at 170 °C, through steady state and transient isotope exchange experiments, H2O cofeed measurements, and density functional theory (DFT) calculations. The study revealed that an increased number of Zr-node defects increase the formation rates to both methanol and methane. Transient experiments linked the increase to a higher number of surface intermediates for both products. Experiments involving either dehydrated or prehydrated Zr-nodes showed higher methanol and methane formation rates over the dehydrated Zr-node. Transient experiments suggested that the difference is related to competitive adsorption between methanol and water. DFT calculations and microkinetic modeling support this conclusion and give further insight into the equilibria involved in the competitive adsorption process. The calculations revealed weaker adsorption of methanol in defective or dehydrated nodes, in agreement with the larger gas phase concentration of methanol observed experimentally. The microkinetic model shows that [Zr2(μ-O)2]4+ and [Zr2(μ–OH)­(μ-O)­(OH)­(H2O)]4+ are the main surface species when the concentration of water is lower than the number of defect sites. Lastly, although addition of water was found to promote methanol desorption, water does not change the methanol steady state reaction rate, while it has a substantial inhibiting effect on CH4 formation. These results indicate that water can be used to increase the reaction selectivity to methanol and encourages further detailed investigations of the catalyst system.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>3HK</sourceid><recordid>eNpVUU1v1DAQtRAVXQo37vjIJcUfsRNfkNCWspVawoGeLceZ7HrJ2ovtFPWC-A_8Q34J3nYl1MNoNDNP783MQ-gNJeeUMPp-a2w6J5Y0VPBnaEEFI5WgTD5HC0IIq5pW8lP0MqVtKWvW0hfolDNFmGrIAv268uM0g7eAw4gvYASbEzZ-wCvW4eBx3gBe3Q8xrMGb7Eqn4JYdwzngG8gb48OEwx1E_DXjL6Xam5idnSBh5_Gt6yrZHIBm-vv7TxfXxjuLL6PZwc8Qv79CJ6OZErw-5jN0e_np23JVXXefr5YfryvDeZurYVCW8hIgVS0tUT1Vtqzaj0rWPYzU2KbmwtSDMqNse96MBU8lE0w0glF-hj488u7nfgeDBZ-jmfQ-up2J9zoYp59OvNvodbjTjSjvq1khePtIYKNL2XntQzSaklYw3dL2QeLdUSKGHzOkrHcuWZgm4yHMSbO6ppJyofh_aLFOb8Mcfbm9kOmDofpgqD4ayv8BbsiSXw</recordid><startdate>20201007</startdate><enddate>20201007</enddate><creator>Gutterød, Emil Sebastian</creator><creator>Pulumati, Sri Harsha</creator><creator>Kaur, Gurpreet</creator><creator>Lazzarini, Andrea</creator><creator>Solemsli, Bjørn Gading</creator><creator>Gunnæs, Anette Eleonora</creator><creator>Ahoba-Sam, Christian</creator><creator>Kalyva, Maria Evangelou</creator><creator>Sannes, Johnny Andreas</creator><creator>Svelle, Stian</creator><creator>Skúlason, Egill</creator><creator>Nova, Ainara</creator><creator>Olsbye, Unni</creator><general>American Chemical Society</general><scope>7X8</scope><scope>3HK</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0404-6597</orcidid><orcidid>https://orcid.org/0000-0002-0724-680X</orcidid><orcidid>https://orcid.org/0000-0002-7468-5546</orcidid><orcidid>https://orcid.org/0000-0003-3368-7702</orcidid><orcidid>https://orcid.org/0000-0003-3693-2857</orcidid></search><sort><creationdate>20201007</creationdate><title>Influence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework</title><author>Gutterød, Emil Sebastian ; Pulumati, Sri Harsha ; Kaur, Gurpreet ; Lazzarini, Andrea ; Solemsli, Bjørn Gading ; Gunnæs, Anette Eleonora ; Ahoba-Sam, Christian ; Kalyva, Maria Evangelou ; Sannes, Johnny Andreas ; Svelle, Stian ; Skúlason, Egill ; Nova, Ainara ; Olsbye, Unni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a338t-dd9c139c1e6946c09b19cfecbf964bef1ac7435a4d9af68b37fc1316252575213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutterød, Emil Sebastian</creatorcontrib><creatorcontrib>Pulumati, Sri Harsha</creatorcontrib><creatorcontrib>Kaur, Gurpreet</creatorcontrib><creatorcontrib>Lazzarini, Andrea</creatorcontrib><creatorcontrib>Solemsli, Bjørn Gading</creatorcontrib><creatorcontrib>Gunnæs, Anette Eleonora</creatorcontrib><creatorcontrib>Ahoba-Sam, Christian</creatorcontrib><creatorcontrib>Kalyva, Maria Evangelou</creatorcontrib><creatorcontrib>Sannes, Johnny Andreas</creatorcontrib><creatorcontrib>Svelle, Stian</creatorcontrib><creatorcontrib>Skúlason, Egill</creatorcontrib><creatorcontrib>Nova, Ainara</creatorcontrib><creatorcontrib>Olsbye, Unni</creatorcontrib><collection>MEDLINE - Academic</collection><collection>NORA - Norwegian Open Research Archives</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutterød, Emil Sebastian</au><au>Pulumati, Sri Harsha</au><au>Kaur, Gurpreet</au><au>Lazzarini, Andrea</au><au>Solemsli, Bjørn Gading</au><au>Gunnæs, Anette Eleonora</au><au>Ahoba-Sam, Christian</au><au>Kalyva, Maria Evangelou</au><au>Sannes, Johnny Andreas</au><au>Svelle, Stian</au><au>Skúlason, Egill</au><au>Nova, Ainara</au><au>Olsbye, Unni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2020-10-07</date><risdate>2020</risdate><volume>142</volume><issue>40</issue><spage>17105</spage><epage>17118</epage><pages>17105-17118</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>In catalysts for CO2 hydrogenation, the interface between metal nanoparticles (NPs) and the support material is of high importance for the activity and reaction selectivity. In Pt NP-containing UiO Zr-metal–organic frameworks (MOFs), key intermediates in methanol formation are adsorbed at open Zr-sites at the Pt–MOF interface. In this study, we investigate the dynamic role of the Zr-node and the influence of H2O on the CO2 hydrogenation reaction at 170 °C, through steady state and transient isotope exchange experiments, H2O cofeed measurements, and density functional theory (DFT) calculations. The study revealed that an increased number of Zr-node defects increase the formation rates to both methanol and methane. Transient experiments linked the increase to a higher number of surface intermediates for both products. Experiments involving either dehydrated or prehydrated Zr-nodes showed higher methanol and methane formation rates over the dehydrated Zr-node. Transient experiments suggested that the difference is related to competitive adsorption between methanol and water. DFT calculations and microkinetic modeling support this conclusion and give further insight into the equilibria involved in the competitive adsorption process. The calculations revealed weaker adsorption of methanol in defective or dehydrated nodes, in agreement with the larger gas phase concentration of methanol observed experimentally. The microkinetic model shows that [Zr2(μ-O)2]4+ and [Zr2(μ–OH)­(μ-O)­(OH)­(H2O)]4+ are the main surface species when the concentration of water is lower than the number of defect sites. Lastly, although addition of water was found to promote methanol desorption, water does not change the methanol steady state reaction rate, while it has a substantial inhibiting effect on CH4 formation. These results indicate that water can be used to increase the reaction selectivity to methanol and encourages further detailed investigations of the catalyst system.</abstract><pub>American Chemical Society</pub><pmid>32902970</pmid><doi>10.1021/jacs.0c07153</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0404-6597</orcidid><orcidid>https://orcid.org/0000-0002-0724-680X</orcidid><orcidid>https://orcid.org/0000-0002-7468-5546</orcidid><orcidid>https://orcid.org/0000-0003-3368-7702</orcidid><orcidid>https://orcid.org/0000-0003-3693-2857</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2020-10, Vol.142 (40), p.17105-17118
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7586342
source NORA - Norwegian Open Research Archives; American Chemical Society Journals
title Influence of Defects and H2O on the Hydrogenation of CO2 to Methanol over Pt Nanoparticles in UiO-67 Metal–Organic Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A44%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20Defects%20and%20H2O%20on%20the%20Hydrogenation%20of%20CO2%20to%20Methanol%20over%20Pt%20Nanoparticles%20in%20UiO-67%20Metal%E2%80%93Organic%20Framework&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Gutter%C3%B8d,%20Emil%20Sebastian&rft.date=2020-10-07&rft.volume=142&rft.issue=40&rft.spage=17105&rft.epage=17118&rft.pages=17105-17118&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.0c07153&rft_dat=%3Cproquest_pubme%3E2441613593%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441613593&rft_id=info:pmid/32902970&rfr_iscdi=true