Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease

Whole-genome sequencing (WGS) has shown promise in becoming a first-tier diagnostic test for patients with rare genetic disorders; however, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Npj genomic medicine 2020-10, Vol.5 (1), p.47-47, Article 47
Hauptverfasser: Marshall, Christian R., Chowdhury, Shimul, Taft, Ryan J., Lebo, Mathew S., Buchan, Jillian G., Harrison, Steven M., Rowsey, Ross, Klee, Eric W., Liu, Pengfei, Worthey, Elizabeth A., Jobanputra, Vaidehi, Dimmock, David, Kearney, Hutton M., Bick, David, Kulkarni, Shashikant, Taylor, Stacie L., Belmont, John W., Stavropoulos, Dimitri J., Lennon, Niall J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 47
container_title Npj genomic medicine
container_volume 5
creator Marshall, Christian R.
Chowdhury, Shimul
Taft, Ryan J.
Lebo, Mathew S.
Buchan, Jillian G.
Harrison, Steven M.
Rowsey, Ross
Klee, Eric W.
Liu, Pengfei
Worthey, Elizabeth A.
Jobanputra, Vaidehi
Dimmock, David
Kearney, Hutton M.
Bick, David
Kulkarni, Shashikant
Taylor, Stacie L.
Belmont, John W.
Stavropoulos, Dimitri J.
Lennon, Niall J.
description Whole-genome sequencing (WGS) has shown promise in becoming a first-tier diagnostic test for patients with rare genetic disorders; however, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading healthcare and research organizations in the US and Canada, was formed to expand access to high-quality clinical WGS by publishing best practices. Here, we present consensus recommendations on clinical WGS analytical validation for the diagnosis of individuals with suspected germline disease with a focus on test development, upfront considerations for test design, test validation practices, and metrics to monitor test performance. This work also provides insight into the current state of WGS testing at each member institution, including the utilization of reference and other standards across sites. Importantly, members of this initiative strongly believe that clinical WGS is an appropriate first-tier test for patients with rare genetic disorders, and at minimum is ready to replace chromosomal microarray analysis and whole-exome sequencing. The recommendations presented here should reduce the burden on laboratories introducing WGS into clinical practice, and support safe and effective WGS testing for diagnosis of germline disease.
doi_str_mv 10.1038/s41525-020-00154-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7585436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471525813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-961e0c21b3313cdad131e9f1f81f58c1088bcfb147810b73a1333ba4b7a63fdf3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotXSP8ABReLCJeCJ7Ti5IEEFtFIlLnC2HGecdeXYi51t1RN_HadblsKBk62ZZ975eAl5CfQtUNa9yxxEI2ra0JpSELzun5DThoq2lj3nTx_9T8hZzte0UK0AaPrn5IQxANo28pT8_Ih5qXZJm8UZzJWNqVq2WOmg_V0JaV_daO9GvbgYqmgr4124D99uo8d6whBnrDL-2GMwLkyVCwuGEcej1Oj0FGJ2eS2fMM1FYY1m1BlfkGdW-4xnD--GfP_86dv5RX319cvl-Yer2nDJl7pvAalpYCiTMzPqERhgb8F2YEVngHbdYOwAXHZAB8k0MMYGzQepW2ZHyzbk_UF3tx9mHA2GJWmvdsnNOt2pqJ36OxPcVk3xRknRCc7aIvDmQSDFsmte1OyyQe91wLjPquFCgBTAoaCv_0Gv4z6Vg66UXG3ryngb0hwok2LOCe1xGKBqtVgdLFbFYnVvsepL0avHaxxLfhtaAHYAckmFcu0_vf8j-wvvxLQL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471525813</pqid></control><display><type>article</type><title>Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease</title><source>Nature Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>PubMed Central</source><creator>Marshall, Christian R. ; Chowdhury, Shimul ; Taft, Ryan J. ; Lebo, Mathew S. ; Buchan, Jillian G. ; Harrison, Steven M. ; Rowsey, Ross ; Klee, Eric W. ; Liu, Pengfei ; Worthey, Elizabeth A. ; Jobanputra, Vaidehi ; Dimmock, David ; Kearney, Hutton M. ; Bick, David ; Kulkarni, Shashikant ; Taylor, Stacie L. ; Belmont, John W. ; Stavropoulos, Dimitri J. ; Lennon, Niall J.</creator><creatorcontrib>Marshall, Christian R. ; Chowdhury, Shimul ; Taft, Ryan J. ; Lebo, Mathew S. ; Buchan, Jillian G. ; Harrison, Steven M. ; Rowsey, Ross ; Klee, Eric W. ; Liu, Pengfei ; Worthey, Elizabeth A. ; Jobanputra, Vaidehi ; Dimmock, David ; Kearney, Hutton M. ; Bick, David ; Kulkarni, Shashikant ; Taylor, Stacie L. ; Belmont, John W. ; Stavropoulos, Dimitri J. ; Lennon, Niall J. ; Medical Genome Initiative ; Medical Genome Initiative</creatorcontrib><description>Whole-genome sequencing (WGS) has shown promise in becoming a first-tier diagnostic test for patients with rare genetic disorders; however, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading healthcare and research organizations in the US and Canada, was formed to expand access to high-quality clinical WGS by publishing best practices. Here, we present consensus recommendations on clinical WGS analytical validation for the diagnosis of individuals with suspected germline disease with a focus on test development, upfront considerations for test design, test validation practices, and metrics to monitor test performance. This work also provides insight into the current state of WGS testing at each member institution, including the utilization of reference and other standards across sites. Importantly, members of this initiative strongly believe that clinical WGS is an appropriate first-tier test for patients with rare genetic disorders, and at minimum is ready to replace chromosomal microarray analysis and whole-exome sequencing. The recommendations presented here should reduce the burden on laboratories introducing WGS into clinical practice, and support safe and effective WGS testing for diagnosis of germline disease.</description><identifier>ISSN: 2056-7944</identifier><identifier>EISSN: 2056-7944</identifier><identifier>DOI: 10.1038/s41525-020-00154-9</identifier><identifier>PMID: 33110627</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/208/2489/1512 ; 631/208/514/2254 ; 692/700/139/1420 ; 692/700/139/1512 ; Bioinformatics ; Biomedical and Life Sciences ; Biomedicine ; Gene Function ; Gene Therapy ; Genetic disorders ; Genomes ; Human Genetics ; Internal Medicine ; Review ; Review Article</subject><ispartof>Npj genomic medicine, 2020-10, Vol.5 (1), p.47-47, Article 47</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-961e0c21b3313cdad131e9f1f81f58c1088bcfb147810b73a1333ba4b7a63fdf3</citedby><cites>FETCH-LOGICAL-c474t-961e0c21b3313cdad131e9f1f81f58c1088bcfb147810b73a1333ba4b7a63fdf3</cites><orcidid>0000-0002-9614-9111 ; 0000-0003-0962-7873 ; 0000-0002-8750-306X ; 0000-0001-6690-2523 ; 0000-0002-4003-7671 ; 0000-0002-9733-5207 ; 0000-0001-6843-3505</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585436/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7585436/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33110627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marshall, Christian R.</creatorcontrib><creatorcontrib>Chowdhury, Shimul</creatorcontrib><creatorcontrib>Taft, Ryan J.</creatorcontrib><creatorcontrib>Lebo, Mathew S.</creatorcontrib><creatorcontrib>Buchan, Jillian G.</creatorcontrib><creatorcontrib>Harrison, Steven M.</creatorcontrib><creatorcontrib>Rowsey, Ross</creatorcontrib><creatorcontrib>Klee, Eric W.</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Worthey, Elizabeth A.</creatorcontrib><creatorcontrib>Jobanputra, Vaidehi</creatorcontrib><creatorcontrib>Dimmock, David</creatorcontrib><creatorcontrib>Kearney, Hutton M.</creatorcontrib><creatorcontrib>Bick, David</creatorcontrib><creatorcontrib>Kulkarni, Shashikant</creatorcontrib><creatorcontrib>Taylor, Stacie L.</creatorcontrib><creatorcontrib>Belmont, John W.</creatorcontrib><creatorcontrib>Stavropoulos, Dimitri J.</creatorcontrib><creatorcontrib>Lennon, Niall J.</creatorcontrib><creatorcontrib>Medical Genome Initiative</creatorcontrib><creatorcontrib>Medical Genome Initiative</creatorcontrib><title>Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease</title><title>Npj genomic medicine</title><addtitle>npj Genom. Med</addtitle><addtitle>NPJ Genom Med</addtitle><description>Whole-genome sequencing (WGS) has shown promise in becoming a first-tier diagnostic test for patients with rare genetic disorders; however, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading healthcare and research organizations in the US and Canada, was formed to expand access to high-quality clinical WGS by publishing best practices. Here, we present consensus recommendations on clinical WGS analytical validation for the diagnosis of individuals with suspected germline disease with a focus on test development, upfront considerations for test design, test validation practices, and metrics to monitor test performance. This work also provides insight into the current state of WGS testing at each member institution, including the utilization of reference and other standards across sites. Importantly, members of this initiative strongly believe that clinical WGS is an appropriate first-tier test for patients with rare genetic disorders, and at minimum is ready to replace chromosomal microarray analysis and whole-exome sequencing. The recommendations presented here should reduce the burden on laboratories introducing WGS into clinical practice, and support safe and effective WGS testing for diagnosis of germline disease.</description><subject>631/208/2489/1512</subject><subject>631/208/514/2254</subject><subject>692/700/139/1420</subject><subject>692/700/139/1512</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Gene Function</subject><subject>Gene Therapy</subject><subject>Genetic disorders</subject><subject>Genomes</subject><subject>Human Genetics</subject><subject>Internal Medicine</subject><subject>Review</subject><subject>Review Article</subject><issn>2056-7944</issn><issn>2056-7944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi0EotXSP8ABReLCJeCJ7Ti5IEEFtFIlLnC2HGecdeXYi51t1RN_HadblsKBk62ZZ975eAl5CfQtUNa9yxxEI2ra0JpSELzun5DThoq2lj3nTx_9T8hZzte0UK0AaPrn5IQxANo28pT8_Ih5qXZJm8UZzJWNqVq2WOmg_V0JaV_daO9GvbgYqmgr4124D99uo8d6whBnrDL-2GMwLkyVCwuGEcej1Oj0FGJ2eS2fMM1FYY1m1BlfkGdW-4xnD--GfP_86dv5RX319cvl-Yer2nDJl7pvAalpYCiTMzPqERhgb8F2YEVngHbdYOwAXHZAB8k0MMYGzQepW2ZHyzbk_UF3tx9mHA2GJWmvdsnNOt2pqJ36OxPcVk3xRknRCc7aIvDmQSDFsmte1OyyQe91wLjPquFCgBTAoaCv_0Gv4z6Vg66UXG3ryngb0hwok2LOCe1xGKBqtVgdLFbFYnVvsepL0avHaxxLfhtaAHYAckmFcu0_vf8j-wvvxLQL</recordid><startdate>20201023</startdate><enddate>20201023</enddate><creator>Marshall, Christian R.</creator><creator>Chowdhury, Shimul</creator><creator>Taft, Ryan J.</creator><creator>Lebo, Mathew S.</creator><creator>Buchan, Jillian G.</creator><creator>Harrison, Steven M.</creator><creator>Rowsey, Ross</creator><creator>Klee, Eric W.</creator><creator>Liu, Pengfei</creator><creator>Worthey, Elizabeth A.</creator><creator>Jobanputra, Vaidehi</creator><creator>Dimmock, David</creator><creator>Kearney, Hutton M.</creator><creator>Bick, David</creator><creator>Kulkarni, Shashikant</creator><creator>Taylor, Stacie L.</creator><creator>Belmont, John W.</creator><creator>Stavropoulos, Dimitri J.</creator><creator>Lennon, Niall J.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T3</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9614-9111</orcidid><orcidid>https://orcid.org/0000-0003-0962-7873</orcidid><orcidid>https://orcid.org/0000-0002-8750-306X</orcidid><orcidid>https://orcid.org/0000-0001-6690-2523</orcidid><orcidid>https://orcid.org/0000-0002-4003-7671</orcidid><orcidid>https://orcid.org/0000-0002-9733-5207</orcidid><orcidid>https://orcid.org/0000-0001-6843-3505</orcidid></search><sort><creationdate>20201023</creationdate><title>Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease</title><author>Marshall, Christian R. ; Chowdhury, Shimul ; Taft, Ryan J. ; Lebo, Mathew S. ; Buchan, Jillian G. ; Harrison, Steven M. ; Rowsey, Ross ; Klee, Eric W. ; Liu, Pengfei ; Worthey, Elizabeth A. ; Jobanputra, Vaidehi ; Dimmock, David ; Kearney, Hutton M. ; Bick, David ; Kulkarni, Shashikant ; Taylor, Stacie L. ; Belmont, John W. ; Stavropoulos, Dimitri J. ; Lennon, Niall J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-961e0c21b3313cdad131e9f1f81f58c1088bcfb147810b73a1333ba4b7a63fdf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/208/2489/1512</topic><topic>631/208/514/2254</topic><topic>692/700/139/1420</topic><topic>692/700/139/1512</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Gene Function</topic><topic>Gene Therapy</topic><topic>Genetic disorders</topic><topic>Genomes</topic><topic>Human Genetics</topic><topic>Internal Medicine</topic><topic>Review</topic><topic>Review Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marshall, Christian R.</creatorcontrib><creatorcontrib>Chowdhury, Shimul</creatorcontrib><creatorcontrib>Taft, Ryan J.</creatorcontrib><creatorcontrib>Lebo, Mathew S.</creatorcontrib><creatorcontrib>Buchan, Jillian G.</creatorcontrib><creatorcontrib>Harrison, Steven M.</creatorcontrib><creatorcontrib>Rowsey, Ross</creatorcontrib><creatorcontrib>Klee, Eric W.</creatorcontrib><creatorcontrib>Liu, Pengfei</creatorcontrib><creatorcontrib>Worthey, Elizabeth A.</creatorcontrib><creatorcontrib>Jobanputra, Vaidehi</creatorcontrib><creatorcontrib>Dimmock, David</creatorcontrib><creatorcontrib>Kearney, Hutton M.</creatorcontrib><creatorcontrib>Bick, David</creatorcontrib><creatorcontrib>Kulkarni, Shashikant</creatorcontrib><creatorcontrib>Taylor, Stacie L.</creatorcontrib><creatorcontrib>Belmont, John W.</creatorcontrib><creatorcontrib>Stavropoulos, Dimitri J.</creatorcontrib><creatorcontrib>Lennon, Niall J.</creatorcontrib><creatorcontrib>Medical Genome Initiative</creatorcontrib><creatorcontrib>Medical Genome Initiative</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Human Genome Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Npj genomic medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marshall, Christian R.</au><au>Chowdhury, Shimul</au><au>Taft, Ryan J.</au><au>Lebo, Mathew S.</au><au>Buchan, Jillian G.</au><au>Harrison, Steven M.</au><au>Rowsey, Ross</au><au>Klee, Eric W.</au><au>Liu, Pengfei</au><au>Worthey, Elizabeth A.</au><au>Jobanputra, Vaidehi</au><au>Dimmock, David</au><au>Kearney, Hutton M.</au><au>Bick, David</au><au>Kulkarni, Shashikant</au><au>Taylor, Stacie L.</au><au>Belmont, John W.</au><au>Stavropoulos, Dimitri J.</au><au>Lennon, Niall J.</au><aucorp>Medical Genome Initiative</aucorp><aucorp>Medical Genome Initiative</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease</atitle><jtitle>Npj genomic medicine</jtitle><stitle>npj Genom. Med</stitle><addtitle>NPJ Genom Med</addtitle><date>2020-10-23</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><spage>47</spage><epage>47</epage><pages>47-47</pages><artnum>47</artnum><issn>2056-7944</issn><eissn>2056-7944</eissn><abstract>Whole-genome sequencing (WGS) has shown promise in becoming a first-tier diagnostic test for patients with rare genetic disorders; however, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading healthcare and research organizations in the US and Canada, was formed to expand access to high-quality clinical WGS by publishing best practices. Here, we present consensus recommendations on clinical WGS analytical validation for the diagnosis of individuals with suspected germline disease with a focus on test development, upfront considerations for test design, test validation practices, and metrics to monitor test performance. This work also provides insight into the current state of WGS testing at each member institution, including the utilization of reference and other standards across sites. Importantly, members of this initiative strongly believe that clinical WGS is an appropriate first-tier test for patients with rare genetic disorders, and at minimum is ready to replace chromosomal microarray analysis and whole-exome sequencing. The recommendations presented here should reduce the burden on laboratories introducing WGS into clinical practice, and support safe and effective WGS testing for diagnosis of germline disease.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33110627</pmid><doi>10.1038/s41525-020-00154-9</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-9614-9111</orcidid><orcidid>https://orcid.org/0000-0003-0962-7873</orcidid><orcidid>https://orcid.org/0000-0002-8750-306X</orcidid><orcidid>https://orcid.org/0000-0001-6690-2523</orcidid><orcidid>https://orcid.org/0000-0002-4003-7671</orcidid><orcidid>https://orcid.org/0000-0002-9733-5207</orcidid><orcidid>https://orcid.org/0000-0001-6843-3505</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-7944
ispartof Npj genomic medicine, 2020-10, Vol.5 (1), p.47-47, Article 47
issn 2056-7944
2056-7944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7585436
source Nature Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; PubMed Central
subjects 631/208/2489/1512
631/208/514/2254
692/700/139/1420
692/700/139/1512
Bioinformatics
Biomedical and Life Sciences
Biomedicine
Gene Function
Gene Therapy
Genetic disorders
Genomes
Human Genetics
Internal Medicine
Review
Review Article
title Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Best%20practices%20for%20the%20analytical%20validation%20of%20clinical%20whole-genome%20sequencing%20intended%20for%20the%20diagnosis%20of%20germline%20disease&rft.jtitle=Npj%20genomic%20medicine&rft.au=Marshall,%20Christian%20R.&rft.aucorp=Medical%20Genome%20Initiative&rft.date=2020-10-23&rft.volume=5&rft.issue=1&rft.spage=47&rft.epage=47&rft.pages=47-47&rft.artnum=47&rft.issn=2056-7944&rft.eissn=2056-7944&rft_id=info:doi/10.1038/s41525-020-00154-9&rft_dat=%3Cproquest_pubme%3E2471525813%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471525813&rft_id=info:pmid/33110627&rfr_iscdi=true