Structural and functional consequences in the amygdala of leptin-deficient mice

On the one hand, the emotional state can influence food intake and on the other hand, hunger can have an impact on the emotional state. Leptin, which is encoded by the ob gene, is involved in the energy homeostasis and plays a role in development of obesity. Mice deficient for leptin (ob/ob) are obe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell and tissue research 2020-11, Vol.382 (2), p.421-426
Hauptverfasser: Schepers, Jens, Gebhardt, Christine, Bracke, Alexander, Eiffler, Ina, von Bohlen und Halbach, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 426
container_issue 2
container_start_page 421
container_title Cell and tissue research
container_volume 382
creator Schepers, Jens
Gebhardt, Christine
Bracke, Alexander
Eiffler, Ina
von Bohlen und Halbach, Oliver
description On the one hand, the emotional state can influence food intake and on the other hand, hunger can have an impact on the emotional state. Leptin, which is encoded by the ob gene, is involved in the energy homeostasis and plays a role in development of obesity. Mice deficient for leptin (ob/ob) are obese and display several behavioral alterations. It has been shown that ob/ob mice display striking changes in neuronal plasticity within the limbic system, e.g., hippocampal formation. We focus on alterations in ob/ob mice that can be related to alter processing in another part of the limbic system, the amygdala. ob/ob mice have a higher food consumption than age-matched controls, which might have an impact on the emotional state of these mice. Since the amygdala is involved in emotional processing, we analyze whether ob/ob mice display alterations in plasticity at the electrophysiological and structural level. No changes were seen in dendritic spine densities in the basolateral and lateral (LA) nucleus of the amygdala. Interestingly and in contrast to the hippocampus (Porter et al. 2013 ), long-term potentiation in the LA was increased in ob/ob mice. Our results indicate that amygdalar and hippocampal synaptic plasticity are regulated in different ways by leptin deficiency in accordance with the different functions of these limbic structures in stress and anxiety.
doi_str_mv 10.1007/s00441-020-03266-x
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A639327776</galeid><sourcerecordid>A639327776</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-8db17b27afdc09790f5ba9e73b591463c23adbb3ad3ca17cb5b726f92f38b6403</originalsourceid><addsrcrecordid>eNp9kt9r1TAUx4Mo7jr9B3yQgiC-dJ4kbdK8CGP4CwZ7UMG3kKTJvRltcm3asf33nuud266IBBrSfM739Hz7JeQlhRMKIN8VgKahNTCogTMh6utHZEUbzmroZPeYrIADq6UQP47Is1IuAWgjhHpKjjiTnRIdX5GLr_O0uHmZzFCZ1FdhSW6OOeHR5VT8z8Un50sVUzVvfGXGm3VvBlPlUA1-O8dU9z5EF32aqzE6_5w8CWYo_sXtfky-f_zw7exzfX7x6cvZ6XntWsnmuustlZZJE3oHSioIrTXKS25bhR_JHeOmtxYf3BkqnW2tZCIoFnhnRQP8mLzf624XO_reYX8cQW-nOJrpRmcT9eFNihu9zldatl3T8p3A21uBKeOQZdZjLM4Pg0k-L0WzhjcgQFGF6Ou_0Mu8TGjRjpK0ZQ3t2D21NoPXMYWMfd1OVJ8KrtByKQVSJ_-gcPUe7csJzcT3BwVvHhRsvBnmTcnDsvtJ5RBke9BNuZTJhzszKOhdXvQ-Lxrzon_nRV9j0auHNt6V_AkIAnwPFLxKaz_dz_4f2V979ssK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471524182</pqid></control><display><type>article</type><title>Structural and functional consequences in the amygdala of leptin-deficient mice</title><source>SpringerLink Journals - AutoHoldings</source><creator>Schepers, Jens ; Gebhardt, Christine ; Bracke, Alexander ; Eiffler, Ina ; von Bohlen und Halbach, Oliver</creator><creatorcontrib>Schepers, Jens ; Gebhardt, Christine ; Bracke, Alexander ; Eiffler, Ina ; von Bohlen und Halbach, Oliver</creatorcontrib><description>On the one hand, the emotional state can influence food intake and on the other hand, hunger can have an impact on the emotional state. Leptin, which is encoded by the ob gene, is involved in the energy homeostasis and plays a role in development of obesity. Mice deficient for leptin (ob/ob) are obese and display several behavioral alterations. It has been shown that ob/ob mice display striking changes in neuronal plasticity within the limbic system, e.g., hippocampal formation. We focus on alterations in ob/ob mice that can be related to alter processing in another part of the limbic system, the amygdala. ob/ob mice have a higher food consumption than age-matched controls, which might have an impact on the emotional state of these mice. Since the amygdala is involved in emotional processing, we analyze whether ob/ob mice display alterations in plasticity at the electrophysiological and structural level. No changes were seen in dendritic spine densities in the basolateral and lateral (LA) nucleus of the amygdala. Interestingly and in contrast to the hippocampus (Porter et al. 2013 ), long-term potentiation in the LA was increased in ob/ob mice. Our results indicate that amygdalar and hippocampal synaptic plasticity are regulated in different ways by leptin deficiency in accordance with the different functions of these limbic structures in stress and anxiety.</description><identifier>ISSN: 0302-766X</identifier><identifier>EISSN: 1432-0878</identifier><identifier>DOI: 10.1007/s00441-020-03266-x</identifier><identifier>PMID: 32789683</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Amygdala ; Animal models ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Dendritic spines ; Emotions ; Energy balance ; Food consumption ; Food intake ; Hippocampal plasticity ; Hippocampus ; Homeostasis ; Human Genetics ; Hunger ; Leptin ; Limbic system ; Long-term potentiation ; Molecular Medicine ; Neurons ; Neurophysiology ; Neuroplasticity ; Obesity ; Proteomics ; Short Communication ; Stress (Psychology) ; Structure-function relationships ; Synaptic plasticity</subject><ispartof>Cell and tissue research, 2020-11, Vol.382 (2), p.421-426</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-8db17b27afdc09790f5ba9e73b591463c23adbb3ad3ca17cb5b726f92f38b6403</citedby><cites>FETCH-LOGICAL-c572t-8db17b27afdc09790f5ba9e73b591463c23adbb3ad3ca17cb5b726f92f38b6403</cites><orcidid>0000-0002-2613-2517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00441-020-03266-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00441-020-03266-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32789683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schepers, Jens</creatorcontrib><creatorcontrib>Gebhardt, Christine</creatorcontrib><creatorcontrib>Bracke, Alexander</creatorcontrib><creatorcontrib>Eiffler, Ina</creatorcontrib><creatorcontrib>von Bohlen und Halbach, Oliver</creatorcontrib><title>Structural and functional consequences in the amygdala of leptin-deficient mice</title><title>Cell and tissue research</title><addtitle>Cell Tissue Res</addtitle><addtitle>Cell Tissue Res</addtitle><description>On the one hand, the emotional state can influence food intake and on the other hand, hunger can have an impact on the emotional state. Leptin, which is encoded by the ob gene, is involved in the energy homeostasis and plays a role in development of obesity. Mice deficient for leptin (ob/ob) are obese and display several behavioral alterations. It has been shown that ob/ob mice display striking changes in neuronal plasticity within the limbic system, e.g., hippocampal formation. We focus on alterations in ob/ob mice that can be related to alter processing in another part of the limbic system, the amygdala. ob/ob mice have a higher food consumption than age-matched controls, which might have an impact on the emotional state of these mice. Since the amygdala is involved in emotional processing, we analyze whether ob/ob mice display alterations in plasticity at the electrophysiological and structural level. No changes were seen in dendritic spine densities in the basolateral and lateral (LA) nucleus of the amygdala. Interestingly and in contrast to the hippocampus (Porter et al. 2013 ), long-term potentiation in the LA was increased in ob/ob mice. Our results indicate that amygdalar and hippocampal synaptic plasticity are regulated in different ways by leptin deficiency in accordance with the different functions of these limbic structures in stress and anxiety.</description><subject>Amygdala</subject><subject>Animal models</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Dendritic spines</subject><subject>Emotions</subject><subject>Energy balance</subject><subject>Food consumption</subject><subject>Food intake</subject><subject>Hippocampal plasticity</subject><subject>Hippocampus</subject><subject>Homeostasis</subject><subject>Human Genetics</subject><subject>Hunger</subject><subject>Leptin</subject><subject>Limbic system</subject><subject>Long-term potentiation</subject><subject>Molecular Medicine</subject><subject>Neurons</subject><subject>Neurophysiology</subject><subject>Neuroplasticity</subject><subject>Obesity</subject><subject>Proteomics</subject><subject>Short Communication</subject><subject>Stress (Psychology)</subject><subject>Structure-function relationships</subject><subject>Synaptic plasticity</subject><issn>0302-766X</issn><issn>1432-0878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kt9r1TAUx4Mo7jr9B3yQgiC-dJ4kbdK8CGP4CwZ7UMG3kKTJvRltcm3asf33nuud266IBBrSfM739Hz7JeQlhRMKIN8VgKahNTCogTMh6utHZEUbzmroZPeYrIADq6UQP47Is1IuAWgjhHpKjjiTnRIdX5GLr_O0uHmZzFCZ1FdhSW6OOeHR5VT8z8Un50sVUzVvfGXGm3VvBlPlUA1-O8dU9z5EF32aqzE6_5w8CWYo_sXtfky-f_zw7exzfX7x6cvZ6XntWsnmuustlZZJE3oHSioIrTXKS25bhR_JHeOmtxYf3BkqnW2tZCIoFnhnRQP8mLzf624XO_reYX8cQW-nOJrpRmcT9eFNihu9zldatl3T8p3A21uBKeOQZdZjLM4Pg0k-L0WzhjcgQFGF6Ou_0Mu8TGjRjpK0ZQ3t2D21NoPXMYWMfd1OVJ8KrtByKQVSJ_-gcPUe7csJzcT3BwVvHhRsvBnmTcnDsvtJ5RBke9BNuZTJhzszKOhdXvQ-Lxrzon_nRV9j0auHNt6V_AkIAnwPFLxKaz_dz_4f2V979ssK</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Schepers, Jens</creator><creator>Gebhardt, Christine</creator><creator>Bracke, Alexander</creator><creator>Eiffler, Ina</creator><creator>von Bohlen und Halbach, Oliver</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2613-2517</orcidid></search><sort><creationdate>20201101</creationdate><title>Structural and functional consequences in the amygdala of leptin-deficient mice</title><author>Schepers, Jens ; Gebhardt, Christine ; Bracke, Alexander ; Eiffler, Ina ; von Bohlen und Halbach, Oliver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-8db17b27afdc09790f5ba9e73b591463c23adbb3ad3ca17cb5b726f92f38b6403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amygdala</topic><topic>Animal models</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Dendritic spines</topic><topic>Emotions</topic><topic>Energy balance</topic><topic>Food consumption</topic><topic>Food intake</topic><topic>Hippocampal plasticity</topic><topic>Hippocampus</topic><topic>Homeostasis</topic><topic>Human Genetics</topic><topic>Hunger</topic><topic>Leptin</topic><topic>Limbic system</topic><topic>Long-term potentiation</topic><topic>Molecular Medicine</topic><topic>Neurons</topic><topic>Neurophysiology</topic><topic>Neuroplasticity</topic><topic>Obesity</topic><topic>Proteomics</topic><topic>Short Communication</topic><topic>Stress (Psychology)</topic><topic>Structure-function relationships</topic><topic>Synaptic plasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schepers, Jens</creatorcontrib><creatorcontrib>Gebhardt, Christine</creatorcontrib><creatorcontrib>Bracke, Alexander</creatorcontrib><creatorcontrib>Eiffler, Ina</creatorcontrib><creatorcontrib>von Bohlen und Halbach, Oliver</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell and tissue research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schepers, Jens</au><au>Gebhardt, Christine</au><au>Bracke, Alexander</au><au>Eiffler, Ina</au><au>von Bohlen und Halbach, Oliver</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and functional consequences in the amygdala of leptin-deficient mice</atitle><jtitle>Cell and tissue research</jtitle><stitle>Cell Tissue Res</stitle><addtitle>Cell Tissue Res</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>382</volume><issue>2</issue><spage>421</spage><epage>426</epage><pages>421-426</pages><issn>0302-766X</issn><eissn>1432-0878</eissn><abstract>On the one hand, the emotional state can influence food intake and on the other hand, hunger can have an impact on the emotional state. Leptin, which is encoded by the ob gene, is involved in the energy homeostasis and plays a role in development of obesity. Mice deficient for leptin (ob/ob) are obese and display several behavioral alterations. It has been shown that ob/ob mice display striking changes in neuronal plasticity within the limbic system, e.g., hippocampal formation. We focus on alterations in ob/ob mice that can be related to alter processing in another part of the limbic system, the amygdala. ob/ob mice have a higher food consumption than age-matched controls, which might have an impact on the emotional state of these mice. Since the amygdala is involved in emotional processing, we analyze whether ob/ob mice display alterations in plasticity at the electrophysiological and structural level. No changes were seen in dendritic spine densities in the basolateral and lateral (LA) nucleus of the amygdala. Interestingly and in contrast to the hippocampus (Porter et al. 2013 ), long-term potentiation in the LA was increased in ob/ob mice. Our results indicate that amygdalar and hippocampal synaptic plasticity are regulated in different ways by leptin deficiency in accordance with the different functions of these limbic structures in stress and anxiety.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32789683</pmid><doi>10.1007/s00441-020-03266-x</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2613-2517</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-766X
ispartof Cell and tissue research, 2020-11, Vol.382 (2), p.421-426
issn 0302-766X
1432-0878
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584530
source SpringerLink Journals - AutoHoldings
subjects Amygdala
Animal models
Biomedical and Life Sciences
Biomedicine
Brain
Dendritic spines
Emotions
Energy balance
Food consumption
Food intake
Hippocampal plasticity
Hippocampus
Homeostasis
Human Genetics
Hunger
Leptin
Limbic system
Long-term potentiation
Molecular Medicine
Neurons
Neurophysiology
Neuroplasticity
Obesity
Proteomics
Short Communication
Stress (Psychology)
Structure-function relationships
Synaptic plasticity
title Structural and functional consequences in the amygdala of leptin-deficient mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20functional%20consequences%20in%20the%20amygdala%20of%20leptin-deficient%20mice&rft.jtitle=Cell%20and%20tissue%20research&rft.au=Schepers,%20Jens&rft.date=2020-11-01&rft.volume=382&rft.issue=2&rft.spage=421&rft.epage=426&rft.pages=421-426&rft.issn=0302-766X&rft.eissn=1432-0878&rft_id=info:doi/10.1007/s00441-020-03266-x&rft_dat=%3Cgale_pubme%3EA639327776%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471524182&rft_id=info:pmid/32789683&rft_galeid=A639327776&rfr_iscdi=true