Bayesian sparse multiple regression for simultaneous rank reduction and variable selection

Summary We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrika 2020-03, Vol.107 (1), p.205-221
Hauptverfasser: Chakraborty, Antik, Bhattacharya, Anirban, Mallick, Bani K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 221
container_issue 1
container_start_page 205
container_title Biometrika
container_volume 107
creator Chakraborty, Antik
Bhattacharya, Anirban
Mallick, Bani K
description Summary We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example.
doi_str_mv 10.1093/biomet/asz056
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asz056</oup_id><sourcerecordid>2429819906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-620c5489082d4396e583dfacf1f176c7538ec515757d9b3a7789fd0a216aee473</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa2qqCxLj1xRpF56CdjxR-JLpXbFl4TUS7lwsSbOBEyTONgJ0vLXNyFbWnrpyRq_3zzN0yPkiNETRjU_LZ1vcTiF-EylekdWTCiRcsnoe7KilKqUCyH2yUGMD_OopPpA9jlnlHJJV-T2G2wxOuiS2EOImLRjM7i-wSTgXcAYne-S2ockulmBDv0YkwDdzwmoRjvMOnRV8gTBQTntRWzw5fuQ7NXQRPy4e9fk5vzsx-Yyvf5-cbX5ep1aIYohVRm1UhSaFlkluFYoC17VYGtWs1zZXPICrWQyl3mlSw55Xui6opAxBYgi52vyZfHtx7LFymI3BGhMH1wLYWs8OPNW6dy9ufNPJpeFyLScDD7vDIJ_HDEOpnXRYtMsaU0mpBBUS80m9NM_6IMfQzfFm6hMF0xrqiYqXSgbfIwB69djGDVza2ZpzSytTfzx3wle6d81_bnQj_1_vH4B3T6k6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429819906</pqid></control><display><type>article</type><title>Bayesian sparse multiple regression for simultaneous rank reduction and variable selection</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Chakraborty, Antik ; Bhattacharya, Anirban ; Mallick, Bani K</creator><creatorcontrib>Chakraborty, Antik ; Bhattacharya, Anirban ; Mallick, Bani K</creatorcontrib><description>Summary We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asz056</identifier><identifier>PMID: 33100350</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayesian analysis ; Computer simulation ; Matrix methods ; Methodology ; Minimax technique ; Optimization ; Parameter estimation ; Post-production processing ; Reduction ; Regression coefficients ; Regression models ; Sparse matrices</subject><ispartof>Biometrika, 2020-03, Vol.107 (1), p.205-221</ispartof><rights>2019 Biometrika Trust 2019</rights><rights>2019 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-620c5489082d4396e583dfacf1f176c7538ec515757d9b3a7789fd0a216aee473</citedby><cites>FETCH-LOGICAL-c448t-620c5489082d4396e583dfacf1f176c7538ec515757d9b3a7789fd0a216aee473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1583,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33100350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Antik</creatorcontrib><creatorcontrib>Bhattacharya, Anirban</creatorcontrib><creatorcontrib>Mallick, Bani K</creatorcontrib><title>Bayesian sparse multiple regression for simultaneous rank reduction and variable selection</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>Summary We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Matrix methods</subject><subject>Methodology</subject><subject>Minimax technique</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Post-production processing</subject><subject>Reduction</subject><subject>Regression coefficients</subject><subject>Regression models</subject><subject>Sparse matrices</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1P3DAQxa2qqCxLj1xRpF56CdjxR-JLpXbFl4TUS7lwsSbOBEyTONgJ0vLXNyFbWnrpyRq_3zzN0yPkiNETRjU_LZ1vcTiF-EylekdWTCiRcsnoe7KilKqUCyH2yUGMD_OopPpA9jlnlHJJV-T2G2wxOuiS2EOImLRjM7i-wSTgXcAYne-S2ockulmBDv0YkwDdzwmoRjvMOnRV8gTBQTntRWzw5fuQ7NXQRPy4e9fk5vzsx-Yyvf5-cbX5ep1aIYohVRm1UhSaFlkluFYoC17VYGtWs1zZXPICrWQyl3mlSw55Xui6opAxBYgi52vyZfHtx7LFymI3BGhMH1wLYWs8OPNW6dy9ufNPJpeFyLScDD7vDIJ_HDEOpnXRYtMsaU0mpBBUS80m9NM_6IMfQzfFm6hMF0xrqiYqXSgbfIwB69djGDVza2ZpzSytTfzx3wle6d81_bnQj_1_vH4B3T6k6Q</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Chakraborty, Antik</creator><creator>Bhattacharya, Anirban</creator><creator>Mallick, Bani K</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Bayesian sparse multiple regression for simultaneous rank reduction and variable selection</title><author>Chakraborty, Antik ; Bhattacharya, Anirban ; Mallick, Bani K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-620c5489082d4396e583dfacf1f176c7538ec515757d9b3a7789fd0a216aee473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Matrix methods</topic><topic>Methodology</topic><topic>Minimax technique</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Post-production processing</topic><topic>Reduction</topic><topic>Regression coefficients</topic><topic>Regression models</topic><topic>Sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Antik</creatorcontrib><creatorcontrib>Bhattacharya, Anirban</creatorcontrib><creatorcontrib>Mallick, Bani K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Antik</au><au>Bhattacharya, Anirban</au><au>Mallick, Bani K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian sparse multiple regression for simultaneous rank reduction and variable selection</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>107</volume><issue>1</issue><spage>205</spage><epage>221</epage><pages>205-221</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33100350</pmid><doi>10.1093/biomet/asz056</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3444
ispartof Biometrika, 2020-03, Vol.107 (1), p.205-221
issn 0006-3444
1464-3510
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584295
source Oxford University Press Journals All Titles (1996-Current)
subjects Bayesian analysis
Computer simulation
Matrix methods
Methodology
Minimax technique
Optimization
Parameter estimation
Post-production processing
Reduction
Regression coefficients
Regression models
Sparse matrices
title Bayesian sparse multiple regression for simultaneous rank reduction and variable selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20sparse%20multiple%20regression%20for%20simultaneous%20rank%20reduction%20and%20variable%20selection&rft.jtitle=Biometrika&rft.au=Chakraborty,%20Antik&rft.date=2020-03-01&rft.volume=107&rft.issue=1&rft.spage=205&rft.epage=221&rft.pages=205-221&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asz056&rft_dat=%3Cproquest_pubme%3E2429819906%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429819906&rft_id=info:pmid/33100350&rft_oup_id=10.1093/biomet/asz056&rfr_iscdi=true