Bayesian sparse multiple regression for simultaneous rank reduction and variable selection
Summary We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a...
Gespeichert in:
Veröffentlicht in: | Biometrika 2020-03, Vol.107 (1), p.205-221 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 221 |
---|---|
container_issue | 1 |
container_start_page | 205 |
container_title | Biometrika |
container_volume | 107 |
creator | Chakraborty, Antik Bhattacharya, Anirban Mallick, Bani K |
description | Summary
We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example. |
doi_str_mv | 10.1093/biomet/asz056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/biomet/asz056</oup_id><sourcerecordid>2429819906</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-620c5489082d4396e583dfacf1f176c7538ec515757d9b3a7789fd0a216aee473</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxa2qqCxLj1xRpF56CdjxR-JLpXbFl4TUS7lwsSbOBEyTONgJ0vLXNyFbWnrpyRq_3zzN0yPkiNETRjU_LZ1vcTiF-EylekdWTCiRcsnoe7KilKqUCyH2yUGMD_OopPpA9jlnlHJJV-T2G2wxOuiS2EOImLRjM7i-wSTgXcAYne-S2ockulmBDv0YkwDdzwmoRjvMOnRV8gTBQTntRWzw5fuQ7NXQRPy4e9fk5vzsx-Yyvf5-cbX5ep1aIYohVRm1UhSaFlkluFYoC17VYGtWs1zZXPICrWQyl3mlSw55Xui6opAxBYgi52vyZfHtx7LFymI3BGhMH1wLYWs8OPNW6dy9ufNPJpeFyLScDD7vDIJ_HDEOpnXRYtMsaU0mpBBUS80m9NM_6IMfQzfFm6hMF0xrqiYqXSgbfIwB69djGDVza2ZpzSytTfzx3wle6d81_bnQj_1_vH4B3T6k6Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429819906</pqid></control><display><type>article</type><title>Bayesian sparse multiple regression for simultaneous rank reduction and variable selection</title><source>Oxford University Press Journals All Titles (1996-Current)</source><creator>Chakraborty, Antik ; Bhattacharya, Anirban ; Mallick, Bani K</creator><creatorcontrib>Chakraborty, Antik ; Bhattacharya, Anirban ; Mallick, Bani K</creatorcontrib><description>Summary
We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asz056</identifier><identifier>PMID: 33100350</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bayesian analysis ; Computer simulation ; Matrix methods ; Methodology ; Minimax technique ; Optimization ; Parameter estimation ; Post-production processing ; Reduction ; Regression coefficients ; Regression models ; Sparse matrices</subject><ispartof>Biometrika, 2020-03, Vol.107 (1), p.205-221</ispartof><rights>2019 Biometrika Trust 2019</rights><rights>2019 Biometrika Trust</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-620c5489082d4396e583dfacf1f176c7538ec515757d9b3a7789fd0a216aee473</citedby><cites>FETCH-LOGICAL-c448t-620c5489082d4396e583dfacf1f176c7538ec515757d9b3a7789fd0a216aee473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1583,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33100350$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chakraborty, Antik</creatorcontrib><creatorcontrib>Bhattacharya, Anirban</creatorcontrib><creatorcontrib>Mallick, Bani K</creatorcontrib><title>Bayesian sparse multiple regression for simultaneous rank reduction and variable selection</title><title>Biometrika</title><addtitle>Biometrika</addtitle><description>Summary
We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Matrix methods</subject><subject>Methodology</subject><subject>Minimax technique</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Post-production processing</subject><subject>Reduction</subject><subject>Regression coefficients</subject><subject>Regression models</subject><subject>Sparse matrices</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkc1P3DAQxa2qqCxLj1xRpF56CdjxR-JLpXbFl4TUS7lwsSbOBEyTONgJ0vLXNyFbWnrpyRq_3zzN0yPkiNETRjU_LZ1vcTiF-EylekdWTCiRcsnoe7KilKqUCyH2yUGMD_OopPpA9jlnlHJJV-T2G2wxOuiS2EOImLRjM7i-wSTgXcAYne-S2ockulmBDv0YkwDdzwmoRjvMOnRV8gTBQTntRWzw5fuQ7NXQRPy4e9fk5vzsx-Yyvf5-cbX5ep1aIYohVRm1UhSaFlkluFYoC17VYGtWs1zZXPICrWQyl3mlSw55Xui6opAxBYgi52vyZfHtx7LFymI3BGhMH1wLYWs8OPNW6dy9ufNPJpeFyLScDD7vDIJ_HDEOpnXRYtMsaU0mpBBUS80m9NM_6IMfQzfFm6hMF0xrqiYqXSgbfIwB69djGDVza2ZpzSytTfzx3wle6d81_bnQj_1_vH4B3T6k6Q</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Chakraborty, Antik</creator><creator>Bhattacharya, Anirban</creator><creator>Mallick, Bani K</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>Bayesian sparse multiple regression for simultaneous rank reduction and variable selection</title><author>Chakraborty, Antik ; Bhattacharya, Anirban ; Mallick, Bani K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-620c5489082d4396e583dfacf1f176c7538ec515757d9b3a7789fd0a216aee473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Matrix methods</topic><topic>Methodology</topic><topic>Minimax technique</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Post-production processing</topic><topic>Reduction</topic><topic>Regression coefficients</topic><topic>Regression models</topic><topic>Sparse matrices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chakraborty, Antik</creatorcontrib><creatorcontrib>Bhattacharya, Anirban</creatorcontrib><creatorcontrib>Mallick, Bani K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chakraborty, Antik</au><au>Bhattacharya, Anirban</au><au>Mallick, Bani K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian sparse multiple regression for simultaneous rank reduction and variable selection</atitle><jtitle>Biometrika</jtitle><addtitle>Biometrika</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>107</volume><issue>1</issue><spage>205</spage><epage>221</epage><pages>205-221</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><abstract>Summary
We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>33100350</pmid><doi>10.1093/biomet/asz056</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2020-03, Vol.107 (1), p.205-221 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7584295 |
source | Oxford University Press Journals All Titles (1996-Current) |
subjects | Bayesian analysis Computer simulation Matrix methods Methodology Minimax technique Optimization Parameter estimation Post-production processing Reduction Regression coefficients Regression models Sparse matrices |
title | Bayesian sparse multiple regression for simultaneous rank reduction and variable selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20sparse%20multiple%20regression%20for%20simultaneous%20rank%20reduction%20and%20variable%20selection&rft.jtitle=Biometrika&rft.au=Chakraborty,%20Antik&rft.date=2020-03-01&rft.volume=107&rft.issue=1&rft.spage=205&rft.epage=221&rft.pages=205-221&rft.issn=0006-3444&rft.eissn=1464-3510&rft_id=info:doi/10.1093/biomet/asz056&rft_dat=%3Cproquest_pubme%3E2429819906%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429819906&rft_id=info:pmid/33100350&rft_oup_id=10.1093/biomet/asz056&rfr_iscdi=true |