Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration

Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous micros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-10, Vol.13 (19), p.4391, Article 4391
Hauptverfasser: Jung, Yoona, Kim, Won-Hyeon, Lee, Sung-Ho, Ju, Kyung Won, Jang, Eun-Hee, Kim, Sung-O, Kim, Bongju, Lee, Jong-Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 4391
container_title Materials
container_volume 13
creator Jung, Yoona
Kim, Won-Hyeon
Lee, Sung-Ho
Ju, Kyung Won
Jang, Eun-Hee
Kim, Sung-O
Kim, Bongju
Lee, Jong-Ho
description Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss (R) (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague-Dawley rat calvarial defect model to evaluate the bone healing e ffect of biomaterials, the efficacy of the newly developed xenograft Ti-oss (R) and Bio-Oss (R) (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss (R) experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss (R) group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss (R) with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.
doi_str_mv 10.3390/ma13194391
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448844779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e1fc939385870800a92b061e9949785abcb341cf118029ed4e965ba12e17ea123</originalsourceid><addsrcrecordid>eNqNkV1vFCEUhidGY5vaG38BiTdGMwoDMwM3JjrWj6Ra02jiHTnDntmlYWAFZhv_vWy3qR9XcsGB8PDy8VTVY0ZfcK7oyxkYZ0pwxe5Vx0ypri4zcf-P8VF1mtIVLY1zJhv1sDrinDLVd81x5c524BbINngSJvIZr8mFyWDAGbvM5MsmpO0GMtZDKP2KfEcf1hGmTKwnl5ATGcDtIFpw5C1OaDL5FFboSMl7EzySS1yjx3hzwqPqwQQu4eltPam-vTv7Onyozy_efxxen9eGS55rZJNRXHHZyp5KSkE1I-0YKiVUL1sYzcgFMxNjkjYKVwJV147AGmQ9lsJPqleH3O0yzrgy6HMEp7fRzhB_6gBW_73i7Uavw073ba9E35aAp7cBMfxYMGU922TQOfAYlqQbIaQUou9VQZ_8g16FJfryPN20hSp_TkWhnh0oE0NKEae7yzCq9x71b48Ffn6Ar3EMUzIWvcG7DcVjK7uua7q90j0t_58ebL4xMYTFZ_4LsfGutg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548833104</pqid></control><display><type>article</type><title>Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jung, Yoona ; Kim, Won-Hyeon ; Lee, Sung-Ho ; Ju, Kyung Won ; Jang, Eun-Hee ; Kim, Sung-O ; Kim, Bongju ; Lee, Jong-Ho</creator><creatorcontrib>Jung, Yoona ; Kim, Won-Hyeon ; Lee, Sung-Ho ; Ju, Kyung Won ; Jang, Eun-Hee ; Kim, Sung-O ; Kim, Bongju ; Lee, Jong-Ho</creatorcontrib><description>Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss (R) (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague-Dawley rat calvarial defect model to evaluate the bone healing e ffect of biomaterials, the efficacy of the newly developed xenograft Ti-oss (R) and Bio-Oss (R) (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss (R) experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss (R) group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss (R) with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13194391</identifier><identifier>PMID: 33019762</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Animals ; Biocompatibility ; Biodegradable materials ; Biomedical materials ; Blood vessels ; Bones ; Calcium phosphates ; Chemistry ; Chemistry, Physical ; Connective tissue ; Evaluation ; Grafting ; Grafts ; Materials Science ; Materials Science, Multidisciplinary ; Metallurgy &amp; Metallurgical Engineering ; Pharmaceuticals ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Pore size ; Porous materials ; Regeneration (physiology) ; Science &amp; Technology ; Skin &amp; tissue grafts ; Substitute bone ; Supply &amp; demand ; Surgical implants ; Technology ; Titanium alloys ; Transplants &amp; implants ; Xenotransplantation</subject><ispartof>Materials, 2020-10, Vol.13 (19), p.4391, Article 4391</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000586662600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c383t-e1fc939385870800a92b061e9949785abcb341cf118029ed4e965ba12e17ea123</citedby><cites>FETCH-LOGICAL-c383t-e1fc939385870800a92b061e9949785abcb341cf118029ed4e965ba12e17ea123</cites><orcidid>0000-0002-9742-7945 ; 0000-0003-3553-761X ; 0000-0002-8843-545X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579475/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579475/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,28255,53798,53800</link.rule.ids></links><search><creatorcontrib>Jung, Yoona</creatorcontrib><creatorcontrib>Kim, Won-Hyeon</creatorcontrib><creatorcontrib>Lee, Sung-Ho</creatorcontrib><creatorcontrib>Ju, Kyung Won</creatorcontrib><creatorcontrib>Jang, Eun-Hee</creatorcontrib><creatorcontrib>Kim, Sung-O</creatorcontrib><creatorcontrib>Kim, Bongju</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><title>Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration</title><title>Materials</title><addtitle>MATERIALS</addtitle><description>Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss (R) (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague-Dawley rat calvarial defect model to evaluate the bone healing e ffect of biomaterials, the efficacy of the newly developed xenograft Ti-oss (R) and Bio-Oss (R) (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss (R) experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss (R) group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss (R) with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biodegradable materials</subject><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>Bones</subject><subject>Calcium phosphates</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Connective tissue</subject><subject>Evaluation</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Pharmaceuticals</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Pore size</subject><subject>Porous materials</subject><subject>Regeneration (physiology)</subject><subject>Science &amp; Technology</subject><subject>Skin &amp; tissue grafts</subject><subject>Substitute bone</subject><subject>Supply &amp; demand</subject><subject>Surgical implants</subject><subject>Technology</subject><subject>Titanium alloys</subject><subject>Transplants &amp; implants</subject><subject>Xenotransplantation</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkV1vFCEUhidGY5vaG38BiTdGMwoDMwM3JjrWj6Ra02jiHTnDntmlYWAFZhv_vWy3qR9XcsGB8PDy8VTVY0ZfcK7oyxkYZ0pwxe5Vx0ypri4zcf-P8VF1mtIVLY1zJhv1sDrinDLVd81x5c524BbINngSJvIZr8mFyWDAGbvM5MsmpO0GMtZDKP2KfEcf1hGmTKwnl5ATGcDtIFpw5C1OaDL5FFboSMl7EzySS1yjx3hzwqPqwQQu4eltPam-vTv7Onyozy_efxxen9eGS55rZJNRXHHZyp5KSkE1I-0YKiVUL1sYzcgFMxNjkjYKVwJV147AGmQ9lsJPqleH3O0yzrgy6HMEp7fRzhB_6gBW_73i7Uavw073ba9E35aAp7cBMfxYMGU922TQOfAYlqQbIaQUou9VQZ_8g16FJfryPN20hSp_TkWhnh0oE0NKEae7yzCq9x71b48Ffn6Ar3EMUzIWvcG7DcVjK7uua7q90j0t_58ebL4xMYTFZ_4LsfGutg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Jung, Yoona</creator><creator>Kim, Won-Hyeon</creator><creator>Lee, Sung-Ho</creator><creator>Ju, Kyung Won</creator><creator>Jang, Eun-Hee</creator><creator>Kim, Sung-O</creator><creator>Kim, Bongju</creator><creator>Lee, Jong-Ho</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9742-7945</orcidid><orcidid>https://orcid.org/0000-0003-3553-761X</orcidid><orcidid>https://orcid.org/0000-0002-8843-545X</orcidid></search><sort><creationdate>20201001</creationdate><title>Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration</title><author>Jung, Yoona ; Kim, Won-Hyeon ; Lee, Sung-Ho ; Ju, Kyung Won ; Jang, Eun-Hee ; Kim, Sung-O ; Kim, Bongju ; Lee, Jong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e1fc939385870800a92b061e9949785abcb341cf118029ed4e965ba12e17ea123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biodegradable materials</topic><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>Bones</topic><topic>Calcium phosphates</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Connective tissue</topic><topic>Evaluation</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Pharmaceuticals</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Pore size</topic><topic>Porous materials</topic><topic>Regeneration (physiology)</topic><topic>Science &amp; Technology</topic><topic>Skin &amp; tissue grafts</topic><topic>Substitute bone</topic><topic>Supply &amp; demand</topic><topic>Surgical implants</topic><topic>Technology</topic><topic>Titanium alloys</topic><topic>Transplants &amp; implants</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Yoona</creatorcontrib><creatorcontrib>Kim, Won-Hyeon</creatorcontrib><creatorcontrib>Lee, Sung-Ho</creatorcontrib><creatorcontrib>Ju, Kyung Won</creatorcontrib><creatorcontrib>Jang, Eun-Hee</creatorcontrib><creatorcontrib>Kim, Sung-O</creatorcontrib><creatorcontrib>Kim, Bongju</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Yoona</au><au>Kim, Won-Hyeon</au><au>Lee, Sung-Ho</au><au>Ju, Kyung Won</au><au>Jang, Eun-Hee</au><au>Kim, Sung-O</au><au>Kim, Bongju</au><au>Lee, Jong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration</atitle><jtitle>Materials</jtitle><stitle>MATERIALS</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>13</volume><issue>19</issue><spage>4391</spage><pages>4391-</pages><artnum>4391</artnum><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss (R) (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague-Dawley rat calvarial defect model to evaluate the bone healing e ffect of biomaterials, the efficacy of the newly developed xenograft Ti-oss (R) and Bio-Oss (R) (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss (R) experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss (R) group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss (R) with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33019762</pmid><doi>10.3390/ma13194391</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9742-7945</orcidid><orcidid>https://orcid.org/0000-0003-3553-761X</orcidid><orcidid>https://orcid.org/0000-0002-8843-545X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-10, Vol.13 (19), p.4391, Article 4391
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579475
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Free Full-Text Journals in Chemistry
subjects Animals
Biocompatibility
Biodegradable materials
Biomedical materials
Blood vessels
Bones
Calcium phosphates
Chemistry
Chemistry, Physical
Connective tissue
Evaluation
Grafting
Grafts
Materials Science
Materials Science, Multidisciplinary
Metallurgy & Metallurgical Engineering
Pharmaceuticals
Physical Sciences
Physics
Physics, Applied
Physics, Condensed Matter
Pore size
Porous materials
Regeneration (physiology)
Science & Technology
Skin & tissue grafts
Substitute bone
Supply & demand
Surgical implants
Technology
Titanium alloys
Transplants & implants
Xenotransplantation
title Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T12%3A13%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20New%20Octacalcium%20Phosphate-Coated%20Xenograft%20in%20Rats%20Calvarial%20Defect%20Model%20on%20Bone%20Regeneration&rft.jtitle=Materials&rft.au=Jung,%20Yoona&rft.date=2020-10-01&rft.volume=13&rft.issue=19&rft.spage=4391&rft.pages=4391-&rft.artnum=4391&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13194391&rft_dat=%3Cproquest_pubme%3E2448844779%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548833104&rft_id=info:pmid/33019762&rfr_iscdi=true