Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration
Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous micros...
Gespeichert in:
Veröffentlicht in: | Materials 2020-10, Vol.13 (19), p.4391, Article 4391 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 4391 |
container_title | Materials |
container_volume | 13 |
creator | Jung, Yoona Kim, Won-Hyeon Lee, Sung-Ho Ju, Kyung Won Jang, Eun-Hee Kim, Sung-O Kim, Bongju Lee, Jong-Ho |
description | Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss (R) (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague-Dawley rat calvarial defect model to evaluate the bone healing e ffect of biomaterials, the efficacy of the newly developed xenograft Ti-oss (R) and Bio-Oss (R) (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss (R) experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss (R) group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss (R) with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products. |
doi_str_mv | 10.3390/ma13194391 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2448844779</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-e1fc939385870800a92b061e9949785abcb341cf118029ed4e965ba12e17ea123</originalsourceid><addsrcrecordid>eNqNkV1vFCEUhidGY5vaG38BiTdGMwoDMwM3JjrWj6Ra02jiHTnDntmlYWAFZhv_vWy3qR9XcsGB8PDy8VTVY0ZfcK7oyxkYZ0pwxe5Vx0ypri4zcf-P8VF1mtIVLY1zJhv1sDrinDLVd81x5c524BbINngSJvIZr8mFyWDAGbvM5MsmpO0GMtZDKP2KfEcf1hGmTKwnl5ATGcDtIFpw5C1OaDL5FFboSMl7EzySS1yjx3hzwqPqwQQu4eltPam-vTv7Onyozy_efxxen9eGS55rZJNRXHHZyp5KSkE1I-0YKiVUL1sYzcgFMxNjkjYKVwJV147AGmQ9lsJPqleH3O0yzrgy6HMEp7fRzhB_6gBW_73i7Uavw073ba9E35aAp7cBMfxYMGU922TQOfAYlqQbIaQUou9VQZ_8g16FJfryPN20hSp_TkWhnh0oE0NKEae7yzCq9x71b48Ffn6Ar3EMUzIWvcG7DcVjK7uua7q90j0t_58ebL4xMYTFZ_4LsfGutg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548833104</pqid></control><display><type>article</type><title>Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jung, Yoona ; Kim, Won-Hyeon ; Lee, Sung-Ho ; Ju, Kyung Won ; Jang, Eun-Hee ; Kim, Sung-O ; Kim, Bongju ; Lee, Jong-Ho</creator><creatorcontrib>Jung, Yoona ; Kim, Won-Hyeon ; Lee, Sung-Ho ; Ju, Kyung Won ; Jang, Eun-Hee ; Kim, Sung-O ; Kim, Bongju ; Lee, Jong-Ho</creatorcontrib><description>Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss (R) (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague-Dawley rat calvarial defect model to evaluate the bone healing e ffect of biomaterials, the efficacy of the newly developed xenograft Ti-oss (R) and Bio-Oss (R) (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss (R) experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss (R) group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss (R) with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13194391</identifier><identifier>PMID: 33019762</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Animals ; Biocompatibility ; Biodegradable materials ; Biomedical materials ; Blood vessels ; Bones ; Calcium phosphates ; Chemistry ; Chemistry, Physical ; Connective tissue ; Evaluation ; Grafting ; Grafts ; Materials Science ; Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering ; Pharmaceuticals ; Physical Sciences ; Physics ; Physics, Applied ; Physics, Condensed Matter ; Pore size ; Porous materials ; Regeneration (physiology) ; Science & Technology ; Skin & tissue grafts ; Substitute bone ; Supply & demand ; Surgical implants ; Technology ; Titanium alloys ; Transplants & implants ; Xenotransplantation</subject><ispartof>Materials, 2020-10, Vol.13 (19), p.4391, Article 4391</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000586662600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c383t-e1fc939385870800a92b061e9949785abcb341cf118029ed4e965ba12e17ea123</citedby><cites>FETCH-LOGICAL-c383t-e1fc939385870800a92b061e9949785abcb341cf118029ed4e965ba12e17ea123</cites><orcidid>0000-0002-9742-7945 ; 0000-0003-3553-761X ; 0000-0002-8843-545X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579475/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579475/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,28255,53798,53800</link.rule.ids></links><search><creatorcontrib>Jung, Yoona</creatorcontrib><creatorcontrib>Kim, Won-Hyeon</creatorcontrib><creatorcontrib>Lee, Sung-Ho</creatorcontrib><creatorcontrib>Ju, Kyung Won</creatorcontrib><creatorcontrib>Jang, Eun-Hee</creatorcontrib><creatorcontrib>Kim, Sung-O</creatorcontrib><creatorcontrib>Kim, Bongju</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><title>Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration</title><title>Materials</title><addtitle>MATERIALS</addtitle><description>Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss (R) (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague-Dawley rat calvarial defect model to evaluate the bone healing e ffect of biomaterials, the efficacy of the newly developed xenograft Ti-oss (R) and Bio-Oss (R) (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss (R) experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss (R) group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss (R) with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biodegradable materials</subject><subject>Biomedical materials</subject><subject>Blood vessels</subject><subject>Bones</subject><subject>Calcium phosphates</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Connective tissue</subject><subject>Evaluation</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Materials Science</subject><subject>Materials Science, Multidisciplinary</subject><subject>Metallurgy & Metallurgical Engineering</subject><subject>Pharmaceuticals</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Physics, Condensed Matter</subject><subject>Pore size</subject><subject>Porous materials</subject><subject>Regeneration (physiology)</subject><subject>Science & Technology</subject><subject>Skin & tissue grafts</subject><subject>Substitute bone</subject><subject>Supply & demand</subject><subject>Surgical implants</subject><subject>Technology</subject><subject>Titanium alloys</subject><subject>Transplants & implants</subject><subject>Xenotransplantation</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkV1vFCEUhidGY5vaG38BiTdGMwoDMwM3JjrWj6Ra02jiHTnDntmlYWAFZhv_vWy3qR9XcsGB8PDy8VTVY0ZfcK7oyxkYZ0pwxe5Vx0ypri4zcf-P8VF1mtIVLY1zJhv1sDrinDLVd81x5c524BbINngSJvIZr8mFyWDAGbvM5MsmpO0GMtZDKP2KfEcf1hGmTKwnl5ATGcDtIFpw5C1OaDL5FFboSMl7EzySS1yjx3hzwqPqwQQu4eltPam-vTv7Onyozy_efxxen9eGS55rZJNRXHHZyp5KSkE1I-0YKiVUL1sYzcgFMxNjkjYKVwJV147AGmQ9lsJPqleH3O0yzrgy6HMEp7fRzhB_6gBW_73i7Uavw073ba9E35aAp7cBMfxYMGU922TQOfAYlqQbIaQUou9VQZ_8g16FJfryPN20hSp_TkWhnh0oE0NKEae7yzCq9x71b48Ffn6Ar3EMUzIWvcG7DcVjK7uua7q90j0t_58ebL4xMYTFZ_4LsfGutg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Jung, Yoona</creator><creator>Kim, Won-Hyeon</creator><creator>Lee, Sung-Ho</creator><creator>Ju, Kyung Won</creator><creator>Jang, Eun-Hee</creator><creator>Kim, Sung-O</creator><creator>Kim, Bongju</creator><creator>Lee, Jong-Ho</creator><general>Mdpi</general><general>MDPI AG</general><general>MDPI</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9742-7945</orcidid><orcidid>https://orcid.org/0000-0003-3553-761X</orcidid><orcidid>https://orcid.org/0000-0002-8843-545X</orcidid></search><sort><creationdate>20201001</creationdate><title>Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration</title><author>Jung, Yoona ; Kim, Won-Hyeon ; Lee, Sung-Ho ; Ju, Kyung Won ; Jang, Eun-Hee ; Kim, Sung-O ; Kim, Bongju ; Lee, Jong-Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-e1fc939385870800a92b061e9949785abcb341cf118029ed4e965ba12e17ea123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biodegradable materials</topic><topic>Biomedical materials</topic><topic>Blood vessels</topic><topic>Bones</topic><topic>Calcium phosphates</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Connective tissue</topic><topic>Evaluation</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Materials Science</topic><topic>Materials Science, Multidisciplinary</topic><topic>Metallurgy & Metallurgical Engineering</topic><topic>Pharmaceuticals</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Physics, Condensed Matter</topic><topic>Pore size</topic><topic>Porous materials</topic><topic>Regeneration (physiology)</topic><topic>Science & Technology</topic><topic>Skin & tissue grafts</topic><topic>Substitute bone</topic><topic>Supply & demand</topic><topic>Surgical implants</topic><topic>Technology</topic><topic>Titanium alloys</topic><topic>Transplants & implants</topic><topic>Xenotransplantation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Yoona</creatorcontrib><creatorcontrib>Kim, Won-Hyeon</creatorcontrib><creatorcontrib>Lee, Sung-Ho</creatorcontrib><creatorcontrib>Ju, Kyung Won</creatorcontrib><creatorcontrib>Jang, Eun-Hee</creatorcontrib><creatorcontrib>Kim, Sung-O</creatorcontrib><creatorcontrib>Kim, Bongju</creatorcontrib><creatorcontrib>Lee, Jong-Ho</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Yoona</au><au>Kim, Won-Hyeon</au><au>Lee, Sung-Ho</au><au>Ju, Kyung Won</au><au>Jang, Eun-Hee</au><au>Kim, Sung-O</au><au>Kim, Bongju</au><au>Lee, Jong-Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration</atitle><jtitle>Materials</jtitle><stitle>MATERIALS</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>13</volume><issue>19</issue><spage>4391</spage><pages>4391-</pages><artnum>4391</artnum><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Bone graft material is essential for satisfactory and sufficient bone growth which leads to a successful implant procedure. It is classified into autogenous bone, allobone, xenobone and alloplastic materials. Among them, it has been reported that heterogeneous bone graft material has a porous microstructure that increases blood vessels and bone formation, and shows faster bone formation than other types of bone graft materials. We observed new bone tissue formation and bone remodeling using Ti-oss (R) (Chiyewon Co., Ltd., Guri, Korea), a heterologous bone graft material. Using a Sprague-Dawley rat calvarial defect model to evaluate the bone healing e ffect of biomaterials, the efficacy of the newly developed xenograft Ti-oss (R) and Bio-Oss (R) (Geistilch Pharma AG, Wolhusen, Switzerland). The experimental animals were sacrificed at 8 and 12 weeks after surgery for each group and the experimental site was extracted. The average new bone area for the Ti-oss (R) experimental group at 8 weeks was 17.6%. The remaining graft material was 22.7% for the experimental group. The average new bone area for the Ti-oss (R) group was 24.3% at 12 weeks. The remaining graft material was 22.8% for the experimental group. It can be evaluated that the new bone-forming ability of Ti-oss (R) with octacalcium phosphate (OCP) has the bone-forming ability corresponding to the conventional products.</abstract><cop>BASEL</cop><pub>Mdpi</pub><pmid>33019762</pmid><doi>10.3390/ma13194391</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9742-7945</orcidid><orcidid>https://orcid.org/0000-0003-3553-761X</orcidid><orcidid>https://orcid.org/0000-0002-8843-545X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-10, Vol.13 (19), p.4391, Article 4391 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579475 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Biocompatibility Biodegradable materials Biomedical materials Blood vessels Bones Calcium phosphates Chemistry Chemistry, Physical Connective tissue Evaluation Grafting Grafts Materials Science Materials Science, Multidisciplinary Metallurgy & Metallurgical Engineering Pharmaceuticals Physical Sciences Physics Physics, Applied Physics, Condensed Matter Pore size Porous materials Regeneration (physiology) Science & Technology Skin & tissue grafts Substitute bone Supply & demand Surgical implants Technology Titanium alloys Transplants & implants Xenotransplantation |
title | Evaluation of New Octacalcium Phosphate-Coated Xenograft in Rats Calvarial Defect Model on Bone Regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A21%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20New%20Octacalcium%20Phosphate-Coated%20Xenograft%20in%20Rats%20Calvarial%20Defect%20Model%20on%20Bone%20Regeneration&rft.jtitle=Materials&rft.au=Jung,%20Yoona&rft.date=2020-10-01&rft.volume=13&rft.issue=19&rft.spage=4391&rft.pages=4391-&rft.artnum=4391&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13194391&rft_dat=%3Cproquest_pubme%3E2448844779%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548833104&rft_id=info:pmid/33019762&rfr_iscdi=true |