In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma
Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) met...
Gespeichert in:
Veröffentlicht in: | Materials 2020-10, Vol.13 (19), p.4411 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | 4411 |
container_title | Materials |
container_volume | 13 |
creator | Fadeeva, Inna V Kalita, Vasilii I Komlev, Dmitry I Radiuk, Alexei A Fomin, Alexander S Davidova, Galina A Fursova, Nadezhda K Murzakhanov, Fadis F Gafurov, Marat R Fosca, Marco Antoniac, Iulian V Barinov, Sergey M Rau, Julietta V |
description | Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn
and Mn
oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against
bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry. |
doi_str_mv | 10.3390/ma13194411 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548830780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-99bf05ba594dccb699c51c7b6f04237e973188e331c30204b2f44dd131b210c13</originalsourceid><addsrcrecordid>eNpVkV1LBCEYhSWKiuqmHxBCd8GUjs7OeBPU9rVQtNDWrajj7BozOqkTdN0fz6Fvb1Teh-M5HgD2MTomhKGTTmCCGaUYr4FtzNgkG2_rf85bYC-EZ5QWIbjK2SbYIgTlOSvINnifWfhkondw7l2vfTQ6QNfAO2GXwuqgs4dBhmjiEHUNF94o0SozdHC-cqFfiajh1Ilo7DLAxnm4MFHYcX5uXKfrEYezrm-FjQFe6N4FMwrJN3jmFZy3InRiF2w0og1672vfAY9Xl4vpTXZ7fz2bnt1miqJJzBiTDSqkKBitlZITxlSBVSknDaI5KTUrU7xKp5AqxUNU5g2ldZ2-R-YYKUx2wOmnbj_I5E1pG71oee9NJ_wbd8Lw_xNrVnzpXnlZlCynRRI4_BLw7mXQIfJnN3ibPPO8oFVFUFmhRB19Usq7ELxufl7AiI-d8d_OEnzw19MP-t0Q-QDhVJNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548830780</pqid></control><display><type>article</type><title>In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fadeeva, Inna V ; Kalita, Vasilii I ; Komlev, Dmitry I ; Radiuk, Alexei A ; Fomin, Alexander S ; Davidova, Galina A ; Fursova, Nadezhda K ; Murzakhanov, Fadis F ; Gafurov, Marat R ; Fosca, Marco ; Antoniac, Iulian V ; Barinov, Sergey M ; Rau, Julietta V</creator><creatorcontrib>Fadeeva, Inna V ; Kalita, Vasilii I ; Komlev, Dmitry I ; Radiuk, Alexei A ; Fomin, Alexander S ; Davidova, Galina A ; Fursova, Nadezhda K ; Murzakhanov, Fadis F ; Gafurov, Marat R ; Fosca, Marco ; Antoniac, Iulian V ; Barinov, Sergey M ; Rau, Julietta V</creatorcontrib><description>Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn
and Mn
oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against
bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13194411</identifier><identifier>PMID: 33022953</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesion ; Ammonia ; Arc deposition ; Biocompatibility ; Biomedical materials ; Calcium carbonate ; Calcium phosphates ; Ceramic coatings ; Contact angle ; Cytotoxicity ; Dental implants ; Dental materials ; Dentistry ; Electron paramagnetic resonance ; Fibroblasts ; Hydroxyapatite ; Investigations ; Manganese ; Morphology ; Orthopedics ; Oxidation ; Phase composition ; Phosphate coatings ; Physiology ; Plasma ; Plasma deposition ; Protective coatings ; Pseudomonas aeruginosa ; Spectroscopy ; Stem cells ; Surgical implants ; Titanium ; Wetting</subject><ispartof>Materials, 2020-10, Vol.13 (19), p.4411</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-99bf05ba594dccb699c51c7b6f04237e973188e331c30204b2f44dd131b210c13</citedby><cites>FETCH-LOGICAL-c406t-99bf05ba594dccb699c51c7b6f04237e973188e331c30204b2f44dd131b210c13</cites><orcidid>0000-0001-6053-2621 ; 0000-0001-5747-6411 ; 0000-0003-0112-3494 ; 0000-0002-5771-1888 ; 0000-0002-7953-1853 ; 0000-0002-2179-2823 ; 0000-0001-7601-6314 ; 0000-0001-7554-3294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579245/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579245/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33022953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fadeeva, Inna V</creatorcontrib><creatorcontrib>Kalita, Vasilii I</creatorcontrib><creatorcontrib>Komlev, Dmitry I</creatorcontrib><creatorcontrib>Radiuk, Alexei A</creatorcontrib><creatorcontrib>Fomin, Alexander S</creatorcontrib><creatorcontrib>Davidova, Galina A</creatorcontrib><creatorcontrib>Fursova, Nadezhda K</creatorcontrib><creatorcontrib>Murzakhanov, Fadis F</creatorcontrib><creatorcontrib>Gafurov, Marat R</creatorcontrib><creatorcontrib>Fosca, Marco</creatorcontrib><creatorcontrib>Antoniac, Iulian V</creatorcontrib><creatorcontrib>Barinov, Sergey M</creatorcontrib><creatorcontrib>Rau, Julietta V</creatorcontrib><title>In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn
and Mn
oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against
bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.</description><subject>Adhesion</subject><subject>Ammonia</subject><subject>Arc deposition</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Calcium carbonate</subject><subject>Calcium phosphates</subject><subject>Ceramic coatings</subject><subject>Contact angle</subject><subject>Cytotoxicity</subject><subject>Dental implants</subject><subject>Dental materials</subject><subject>Dentistry</subject><subject>Electron paramagnetic resonance</subject><subject>Fibroblasts</subject><subject>Hydroxyapatite</subject><subject>Investigations</subject><subject>Manganese</subject><subject>Morphology</subject><subject>Orthopedics</subject><subject>Oxidation</subject><subject>Phase composition</subject><subject>Phosphate coatings</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Plasma deposition</subject><subject>Protective coatings</subject><subject>Pseudomonas aeruginosa</subject><subject>Spectroscopy</subject><subject>Stem cells</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Wetting</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkV1LBCEYhSWKiuqmHxBCd8GUjs7OeBPU9rVQtNDWrajj7BozOqkTdN0fz6Fvb1Teh-M5HgD2MTomhKGTTmCCGaUYr4FtzNgkG2_rf85bYC-EZ5QWIbjK2SbYIgTlOSvINnifWfhkondw7l2vfTQ6QNfAO2GXwuqgs4dBhmjiEHUNF94o0SozdHC-cqFfiajh1Ilo7DLAxnm4MFHYcX5uXKfrEYezrm-FjQFe6N4FMwrJN3jmFZy3InRiF2w0og1672vfAY9Xl4vpTXZ7fz2bnt1miqJJzBiTDSqkKBitlZITxlSBVSknDaI5KTUrU7xKp5AqxUNU5g2ldZ2-R-YYKUx2wOmnbj_I5E1pG71oee9NJ_wbd8Lw_xNrVnzpXnlZlCynRRI4_BLw7mXQIfJnN3ibPPO8oFVFUFmhRB19Usq7ELxufl7AiI-d8d_OEnzw19MP-t0Q-QDhVJNw</recordid><startdate>20201003</startdate><enddate>20201003</enddate><creator>Fadeeva, Inna V</creator><creator>Kalita, Vasilii I</creator><creator>Komlev, Dmitry I</creator><creator>Radiuk, Alexei A</creator><creator>Fomin, Alexander S</creator><creator>Davidova, Galina A</creator><creator>Fursova, Nadezhda K</creator><creator>Murzakhanov, Fadis F</creator><creator>Gafurov, Marat R</creator><creator>Fosca, Marco</creator><creator>Antoniac, Iulian V</creator><creator>Barinov, Sergey M</creator><creator>Rau, Julietta V</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6053-2621</orcidid><orcidid>https://orcid.org/0000-0001-5747-6411</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid><orcidid>https://orcid.org/0000-0002-5771-1888</orcidid><orcidid>https://orcid.org/0000-0002-7953-1853</orcidid><orcidid>https://orcid.org/0000-0002-2179-2823</orcidid><orcidid>https://orcid.org/0000-0001-7601-6314</orcidid><orcidid>https://orcid.org/0000-0001-7554-3294</orcidid></search><sort><creationdate>20201003</creationdate><title>In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma</title><author>Fadeeva, Inna V ; Kalita, Vasilii I ; Komlev, Dmitry I ; Radiuk, Alexei A ; Fomin, Alexander S ; Davidova, Galina A ; Fursova, Nadezhda K ; Murzakhanov, Fadis F ; Gafurov, Marat R ; Fosca, Marco ; Antoniac, Iulian V ; Barinov, Sergey M ; Rau, Julietta V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-99bf05ba594dccb699c51c7b6f04237e973188e331c30204b2f44dd131b210c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesion</topic><topic>Ammonia</topic><topic>Arc deposition</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Calcium carbonate</topic><topic>Calcium phosphates</topic><topic>Ceramic coatings</topic><topic>Contact angle</topic><topic>Cytotoxicity</topic><topic>Dental implants</topic><topic>Dental materials</topic><topic>Dentistry</topic><topic>Electron paramagnetic resonance</topic><topic>Fibroblasts</topic><topic>Hydroxyapatite</topic><topic>Investigations</topic><topic>Manganese</topic><topic>Morphology</topic><topic>Orthopedics</topic><topic>Oxidation</topic><topic>Phase composition</topic><topic>Phosphate coatings</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Plasma deposition</topic><topic>Protective coatings</topic><topic>Pseudomonas aeruginosa</topic><topic>Spectroscopy</topic><topic>Stem cells</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fadeeva, Inna V</creatorcontrib><creatorcontrib>Kalita, Vasilii I</creatorcontrib><creatorcontrib>Komlev, Dmitry I</creatorcontrib><creatorcontrib>Radiuk, Alexei A</creatorcontrib><creatorcontrib>Fomin, Alexander S</creatorcontrib><creatorcontrib>Davidova, Galina A</creatorcontrib><creatorcontrib>Fursova, Nadezhda K</creatorcontrib><creatorcontrib>Murzakhanov, Fadis F</creatorcontrib><creatorcontrib>Gafurov, Marat R</creatorcontrib><creatorcontrib>Fosca, Marco</creatorcontrib><creatorcontrib>Antoniac, Iulian V</creatorcontrib><creatorcontrib>Barinov, Sergey M</creatorcontrib><creatorcontrib>Rau, Julietta V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fadeeva, Inna V</au><au>Kalita, Vasilii I</au><au>Komlev, Dmitry I</au><au>Radiuk, Alexei A</au><au>Fomin, Alexander S</au><au>Davidova, Galina A</au><au>Fursova, Nadezhda K</au><au>Murzakhanov, Fadis F</au><au>Gafurov, Marat R</au><au>Fosca, Marco</au><au>Antoniac, Iulian V</au><au>Barinov, Sergey M</au><au>Rau, Julietta V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-10-03</date><risdate>2020</risdate><volume>13</volume><issue>19</issue><spage>4411</spage><pages>4411-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn
and Mn
oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against
bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33022953</pmid><doi>10.3390/ma13194411</doi><orcidid>https://orcid.org/0000-0001-6053-2621</orcidid><orcidid>https://orcid.org/0000-0001-5747-6411</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid><orcidid>https://orcid.org/0000-0002-5771-1888</orcidid><orcidid>https://orcid.org/0000-0002-7953-1853</orcidid><orcidid>https://orcid.org/0000-0002-2179-2823</orcidid><orcidid>https://orcid.org/0000-0001-7601-6314</orcidid><orcidid>https://orcid.org/0000-0001-7554-3294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-10, Vol.13 (19), p.4411 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579245 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adhesion Ammonia Arc deposition Biocompatibility Biomedical materials Calcium carbonate Calcium phosphates Ceramic coatings Contact angle Cytotoxicity Dental implants Dental materials Dentistry Electron paramagnetic resonance Fibroblasts Hydroxyapatite Investigations Manganese Morphology Orthopedics Oxidation Phase composition Phosphate coatings Physiology Plasma Plasma deposition Protective coatings Pseudomonas aeruginosa Spectroscopy Stem cells Surgical implants Titanium Wetting |
title | In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Properties%20of%20Manganese-Substituted%20Tricalcium%20Phosphate%20Coatings%20for%20Titanium%20Biomedical%20Implants%20Deposited%20by%20Arc%20Plasma&rft.jtitle=Materials&rft.au=Fadeeva,%20Inna%20V&rft.date=2020-10-03&rft.volume=13&rft.issue=19&rft.spage=4411&rft.pages=4411-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13194411&rft_dat=%3Cproquest_pubme%3E2548830780%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548830780&rft_id=info:pmid/33022953&rfr_iscdi=true |