In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma

Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-10, Vol.13 (19), p.4411
Hauptverfasser: Fadeeva, Inna V, Kalita, Vasilii I, Komlev, Dmitry I, Radiuk, Alexei A, Fomin, Alexander S, Davidova, Galina A, Fursova, Nadezhda K, Murzakhanov, Fadis F, Gafurov, Marat R, Fosca, Marco, Antoniac, Iulian V, Barinov, Sergey M, Rau, Julietta V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page 4411
container_title Materials
container_volume 13
creator Fadeeva, Inna V
Kalita, Vasilii I
Komlev, Dmitry I
Radiuk, Alexei A
Fomin, Alexander S
Davidova, Galina A
Fursova, Nadezhda K
Murzakhanov, Fadis F
Gafurov, Marat R
Fosca, Marco
Antoniac, Iulian V
Barinov, Sergey M
Rau, Julietta V
description Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn and Mn oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.
doi_str_mv 10.3390/ma13194411
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548830780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-99bf05ba594dccb699c51c7b6f04237e973188e331c30204b2f44dd131b210c13</originalsourceid><addsrcrecordid>eNpVkV1LBCEYhSWKiuqmHxBCd8GUjs7OeBPU9rVQtNDWrajj7BozOqkTdN0fz6Fvb1Teh-M5HgD2MTomhKGTTmCCGaUYr4FtzNgkG2_rf85bYC-EZ5QWIbjK2SbYIgTlOSvINnifWfhkondw7l2vfTQ6QNfAO2GXwuqgs4dBhmjiEHUNF94o0SozdHC-cqFfiajh1Ilo7DLAxnm4MFHYcX5uXKfrEYezrm-FjQFe6N4FMwrJN3jmFZy3InRiF2w0og1672vfAY9Xl4vpTXZ7fz2bnt1miqJJzBiTDSqkKBitlZITxlSBVSknDaI5KTUrU7xKp5AqxUNU5g2ldZ2-R-YYKUx2wOmnbj_I5E1pG71oee9NJ_wbd8Lw_xNrVnzpXnlZlCynRRI4_BLw7mXQIfJnN3ibPPO8oFVFUFmhRB19Usq7ELxufl7AiI-d8d_OEnzw19MP-t0Q-QDhVJNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548830780</pqid></control><display><type>article</type><title>In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fadeeva, Inna V ; Kalita, Vasilii I ; Komlev, Dmitry I ; Radiuk, Alexei A ; Fomin, Alexander S ; Davidova, Galina A ; Fursova, Nadezhda K ; Murzakhanov, Fadis F ; Gafurov, Marat R ; Fosca, Marco ; Antoniac, Iulian V ; Barinov, Sergey M ; Rau, Julietta V</creator><creatorcontrib>Fadeeva, Inna V ; Kalita, Vasilii I ; Komlev, Dmitry I ; Radiuk, Alexei A ; Fomin, Alexander S ; Davidova, Galina A ; Fursova, Nadezhda K ; Murzakhanov, Fadis F ; Gafurov, Marat R ; Fosca, Marco ; Antoniac, Iulian V ; Barinov, Sergey M ; Rau, Julietta V</creatorcontrib><description>Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn and Mn oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13194411</identifier><identifier>PMID: 33022953</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adhesion ; Ammonia ; Arc deposition ; Biocompatibility ; Biomedical materials ; Calcium carbonate ; Calcium phosphates ; Ceramic coatings ; Contact angle ; Cytotoxicity ; Dental implants ; Dental materials ; Dentistry ; Electron paramagnetic resonance ; Fibroblasts ; Hydroxyapatite ; Investigations ; Manganese ; Morphology ; Orthopedics ; Oxidation ; Phase composition ; Phosphate coatings ; Physiology ; Plasma ; Plasma deposition ; Protective coatings ; Pseudomonas aeruginosa ; Spectroscopy ; Stem cells ; Surgical implants ; Titanium ; Wetting</subject><ispartof>Materials, 2020-10, Vol.13 (19), p.4411</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-99bf05ba594dccb699c51c7b6f04237e973188e331c30204b2f44dd131b210c13</citedby><cites>FETCH-LOGICAL-c406t-99bf05ba594dccb699c51c7b6f04237e973188e331c30204b2f44dd131b210c13</cites><orcidid>0000-0001-6053-2621 ; 0000-0001-5747-6411 ; 0000-0003-0112-3494 ; 0000-0002-5771-1888 ; 0000-0002-7953-1853 ; 0000-0002-2179-2823 ; 0000-0001-7601-6314 ; 0000-0001-7554-3294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579245/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579245/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33022953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fadeeva, Inna V</creatorcontrib><creatorcontrib>Kalita, Vasilii I</creatorcontrib><creatorcontrib>Komlev, Dmitry I</creatorcontrib><creatorcontrib>Radiuk, Alexei A</creatorcontrib><creatorcontrib>Fomin, Alexander S</creatorcontrib><creatorcontrib>Davidova, Galina A</creatorcontrib><creatorcontrib>Fursova, Nadezhda K</creatorcontrib><creatorcontrib>Murzakhanov, Fadis F</creatorcontrib><creatorcontrib>Gafurov, Marat R</creatorcontrib><creatorcontrib>Fosca, Marco</creatorcontrib><creatorcontrib>Antoniac, Iulian V</creatorcontrib><creatorcontrib>Barinov, Sergey M</creatorcontrib><creatorcontrib>Rau, Julietta V</creatorcontrib><title>In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn and Mn oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.</description><subject>Adhesion</subject><subject>Ammonia</subject><subject>Arc deposition</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Calcium carbonate</subject><subject>Calcium phosphates</subject><subject>Ceramic coatings</subject><subject>Contact angle</subject><subject>Cytotoxicity</subject><subject>Dental implants</subject><subject>Dental materials</subject><subject>Dentistry</subject><subject>Electron paramagnetic resonance</subject><subject>Fibroblasts</subject><subject>Hydroxyapatite</subject><subject>Investigations</subject><subject>Manganese</subject><subject>Morphology</subject><subject>Orthopedics</subject><subject>Oxidation</subject><subject>Phase composition</subject><subject>Phosphate coatings</subject><subject>Physiology</subject><subject>Plasma</subject><subject>Plasma deposition</subject><subject>Protective coatings</subject><subject>Pseudomonas aeruginosa</subject><subject>Spectroscopy</subject><subject>Stem cells</subject><subject>Surgical implants</subject><subject>Titanium</subject><subject>Wetting</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkV1LBCEYhSWKiuqmHxBCd8GUjs7OeBPU9rVQtNDWrajj7BozOqkTdN0fz6Fvb1Teh-M5HgD2MTomhKGTTmCCGaUYr4FtzNgkG2_rf85bYC-EZ5QWIbjK2SbYIgTlOSvINnifWfhkondw7l2vfTQ6QNfAO2GXwuqgs4dBhmjiEHUNF94o0SozdHC-cqFfiajh1Ilo7DLAxnm4MFHYcX5uXKfrEYezrm-FjQFe6N4FMwrJN3jmFZy3InRiF2w0og1672vfAY9Xl4vpTXZ7fz2bnt1miqJJzBiTDSqkKBitlZITxlSBVSknDaI5KTUrU7xKp5AqxUNU5g2ldZ2-R-YYKUx2wOmnbj_I5E1pG71oee9NJ_wbd8Lw_xNrVnzpXnlZlCynRRI4_BLw7mXQIfJnN3ibPPO8oFVFUFmhRB19Usq7ELxufl7AiI-d8d_OEnzw19MP-t0Q-QDhVJNw</recordid><startdate>20201003</startdate><enddate>20201003</enddate><creator>Fadeeva, Inna V</creator><creator>Kalita, Vasilii I</creator><creator>Komlev, Dmitry I</creator><creator>Radiuk, Alexei A</creator><creator>Fomin, Alexander S</creator><creator>Davidova, Galina A</creator><creator>Fursova, Nadezhda K</creator><creator>Murzakhanov, Fadis F</creator><creator>Gafurov, Marat R</creator><creator>Fosca, Marco</creator><creator>Antoniac, Iulian V</creator><creator>Barinov, Sergey M</creator><creator>Rau, Julietta V</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6053-2621</orcidid><orcidid>https://orcid.org/0000-0001-5747-6411</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid><orcidid>https://orcid.org/0000-0002-5771-1888</orcidid><orcidid>https://orcid.org/0000-0002-7953-1853</orcidid><orcidid>https://orcid.org/0000-0002-2179-2823</orcidid><orcidid>https://orcid.org/0000-0001-7601-6314</orcidid><orcidid>https://orcid.org/0000-0001-7554-3294</orcidid></search><sort><creationdate>20201003</creationdate><title>In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma</title><author>Fadeeva, Inna V ; Kalita, Vasilii I ; Komlev, Dmitry I ; Radiuk, Alexei A ; Fomin, Alexander S ; Davidova, Galina A ; Fursova, Nadezhda K ; Murzakhanov, Fadis F ; Gafurov, Marat R ; Fosca, Marco ; Antoniac, Iulian V ; Barinov, Sergey M ; Rau, Julietta V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-99bf05ba594dccb699c51c7b6f04237e973188e331c30204b2f44dd131b210c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adhesion</topic><topic>Ammonia</topic><topic>Arc deposition</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Calcium carbonate</topic><topic>Calcium phosphates</topic><topic>Ceramic coatings</topic><topic>Contact angle</topic><topic>Cytotoxicity</topic><topic>Dental implants</topic><topic>Dental materials</topic><topic>Dentistry</topic><topic>Electron paramagnetic resonance</topic><topic>Fibroblasts</topic><topic>Hydroxyapatite</topic><topic>Investigations</topic><topic>Manganese</topic><topic>Morphology</topic><topic>Orthopedics</topic><topic>Oxidation</topic><topic>Phase composition</topic><topic>Phosphate coatings</topic><topic>Physiology</topic><topic>Plasma</topic><topic>Plasma deposition</topic><topic>Protective coatings</topic><topic>Pseudomonas aeruginosa</topic><topic>Spectroscopy</topic><topic>Stem cells</topic><topic>Surgical implants</topic><topic>Titanium</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fadeeva, Inna V</creatorcontrib><creatorcontrib>Kalita, Vasilii I</creatorcontrib><creatorcontrib>Komlev, Dmitry I</creatorcontrib><creatorcontrib>Radiuk, Alexei A</creatorcontrib><creatorcontrib>Fomin, Alexander S</creatorcontrib><creatorcontrib>Davidova, Galina A</creatorcontrib><creatorcontrib>Fursova, Nadezhda K</creatorcontrib><creatorcontrib>Murzakhanov, Fadis F</creatorcontrib><creatorcontrib>Gafurov, Marat R</creatorcontrib><creatorcontrib>Fosca, Marco</creatorcontrib><creatorcontrib>Antoniac, Iulian V</creatorcontrib><creatorcontrib>Barinov, Sergey M</creatorcontrib><creatorcontrib>Rau, Julietta V</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fadeeva, Inna V</au><au>Kalita, Vasilii I</au><au>Komlev, Dmitry I</au><au>Radiuk, Alexei A</au><au>Fomin, Alexander S</au><au>Davidova, Galina A</au><au>Fursova, Nadezhda K</au><au>Murzakhanov, Fadis F</au><au>Gafurov, Marat R</au><au>Fosca, Marco</au><au>Antoniac, Iulian V</au><au>Barinov, Sergey M</au><au>Rau, Julietta V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-10-03</date><risdate>2020</risdate><volume>13</volume><issue>19</issue><spage>4411</spage><pages>4411-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Bioactive manganese (Mn)-doped ceramic coatings for intraosseous titanium (Ti) implants are developed. Arc plasma deposition procedure is used for coatings preparation. X-ray Diffraction, Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy, and Electron Paramagnetic Resonance (EPR) methods are applied for coatings characterization. The coatings are homogeneous, composed of the main phase α-tricalcium phosphate (α-TCP) (about 67%) and the minor phase hydroxyapatite (about 33%), and the Mn content is 2.3 wt%. EPR spectroscopy demonstrates that the Mn ions are incorporated in the TCP structure and are present in the coating in Mn and Mn oxidation states, being aggregated in clusters. The wetting contact angle of the deposited coatings is suitable for cells' adhesion and proliferation. In vitro soaking in physiological solution for 90 days leads to a drastic change in phase composition; the transformation into calcium carbonate and octacalcium phosphate takes place, and no more Mn is present. The absence of antibacterial activity against bacteria strains is observed. A study of the metabolic activity of mouse fibroblasts of the NCTC L929 cell line on the coatings using the MTT (dye compound 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test demonstrates that there is no toxic effect on the cell culture. Moreover, the coating material supports the adhesion and proliferation of the cells. A good adhesion, spreading, and proliferative activity of the human tooth postnatal dental pulp stem cells (DPSC) is demonstrated. The developed coatings are promising for implant application in orthopedics and dentistry.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>33022953</pmid><doi>10.3390/ma13194411</doi><orcidid>https://orcid.org/0000-0001-6053-2621</orcidid><orcidid>https://orcid.org/0000-0001-5747-6411</orcidid><orcidid>https://orcid.org/0000-0003-0112-3494</orcidid><orcidid>https://orcid.org/0000-0002-5771-1888</orcidid><orcidid>https://orcid.org/0000-0002-7953-1853</orcidid><orcidid>https://orcid.org/0000-0002-2179-2823</orcidid><orcidid>https://orcid.org/0000-0001-7601-6314</orcidid><orcidid>https://orcid.org/0000-0001-7554-3294</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-10, Vol.13 (19), p.4411
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7579245
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adhesion
Ammonia
Arc deposition
Biocompatibility
Biomedical materials
Calcium carbonate
Calcium phosphates
Ceramic coatings
Contact angle
Cytotoxicity
Dental implants
Dental materials
Dentistry
Electron paramagnetic resonance
Fibroblasts
Hydroxyapatite
Investigations
Manganese
Morphology
Orthopedics
Oxidation
Phase composition
Phosphate coatings
Physiology
Plasma
Plasma deposition
Protective coatings
Pseudomonas aeruginosa
Spectroscopy
Stem cells
Surgical implants
Titanium
Wetting
title In Vitro Properties of Manganese-Substituted Tricalcium Phosphate Coatings for Titanium Biomedical Implants Deposited by Arc Plasma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T13%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vitro%20Properties%20of%20Manganese-Substituted%20Tricalcium%20Phosphate%20Coatings%20for%20Titanium%20Biomedical%20Implants%20Deposited%20by%20Arc%20Plasma&rft.jtitle=Materials&rft.au=Fadeeva,%20Inna%20V&rft.date=2020-10-03&rft.volume=13&rft.issue=19&rft.spage=4411&rft.pages=4411-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13194411&rft_dat=%3Cproquest_pubme%3E2548830780%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548830780&rft_id=info:pmid/33022953&rfr_iscdi=true