Lights, cytoskeleton, action: Optogenetic control of cell dynamics

Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system des...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in cell biology 2020-10, Vol.66, p.1-10
Hauptverfasser: Wittmann, Torsten, Dema, Alessandro, van Haren, Jeffrey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title Current opinion in cell biology
container_volume 66
creator Wittmann, Torsten
Dema, Alessandro
van Haren, Jeffrey
description Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein–protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.
doi_str_mv 10.1016/j.ceb.2020.03.003
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7577957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955067420300454</els_id><sourcerecordid>2399233828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-8032663ab2be2e772df50f313b472958a7bbf1ce573daf03724f0e3b382b1313</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEgjH4AVxQjxxocZK2aUFCAsSXNIkL9yhJ3ZHRNaPJJu3fk2mA4MLJBz9-bT-EnFDIKNDyYpYZ1BkDBhnwDIDvkBGtRJ1CTmGXjKAuihRKkR-QQ-9nAFACq_fJAWdcUJ4XI3I7sdO34M8Tsw7Ov2OHwfXniTLBuv4yeVkEN8UegzWJcX0YXJe4NjHYdUmz7tXcGn9E9lrVeTz-qmPy-nD_eveUTl4en-9uJqkpqAhpBZyVJVeaaWQoBGvaAlpOuc4Fq4tKCa1barAQvFEtcMHyFpBrXjFNIzYm19vYxVLPsTEYr1GdXAx2roa1dMrKv53evsmpW0lRCFHH1DE5-woY3McSfZBz6zefqB7d0kvG65rxuK6KKN2iZnDeD9j-rKEgN-rlTEb1cqNeApdRfZw5_X3fz8S36whcbQGMklYWB-mNxd5gYwc0QTbO_hP_CWOplIQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2399233828</pqid></control><display><type>article</type><title>Lights, cytoskeleton, action: Optogenetic control of cell dynamics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Wittmann, Torsten ; Dema, Alessandro ; van Haren, Jeffrey</creator><creatorcontrib>Wittmann, Torsten ; Dema, Alessandro ; van Haren, Jeffrey</creatorcontrib><description>Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein–protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.</description><identifier>ISSN: 0955-0674</identifier><identifier>EISSN: 1879-0410</identifier><identifier>DOI: 10.1016/j.ceb.2020.03.003</identifier><identifier>PMID: 32371345</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Actin ; Animals ; Cell dynamics ; Cry2 ; Cytoskeleton - metabolism ; Cytoskeleton - radiation effects ; Cytoskeleton dynamics ; Humans ; Light ; LOV2 ; Microscopy ; Microtubule ; Motor proteins ; Optogenetics ; Photoactivation ; PhyB ; rho GTP-Binding Proteins - metabolism ; Rho GTPase ; Signal Transduction - radiation effects ; VVD</subject><ispartof>Current opinion in cell biology, 2020-10, Vol.66, p.1-10</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-8032663ab2be2e772df50f313b472958a7bbf1ce573daf03724f0e3b382b1313</citedby><cites>FETCH-LOGICAL-c517t-8032663ab2be2e772df50f313b472958a7bbf1ce573daf03724f0e3b382b1313</cites><orcidid>0000-0002-3160-3547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0955067420300454$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32371345$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wittmann, Torsten</creatorcontrib><creatorcontrib>Dema, Alessandro</creatorcontrib><creatorcontrib>van Haren, Jeffrey</creatorcontrib><title>Lights, cytoskeleton, action: Optogenetic control of cell dynamics</title><title>Current opinion in cell biology</title><addtitle>Curr Opin Cell Biol</addtitle><description>Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein–protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.</description><subject>Actin</subject><subject>Animals</subject><subject>Cell dynamics</subject><subject>Cry2</subject><subject>Cytoskeleton - metabolism</subject><subject>Cytoskeleton - radiation effects</subject><subject>Cytoskeleton dynamics</subject><subject>Humans</subject><subject>Light</subject><subject>LOV2</subject><subject>Microscopy</subject><subject>Microtubule</subject><subject>Motor proteins</subject><subject>Optogenetics</subject><subject>Photoactivation</subject><subject>PhyB</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>Rho GTPase</subject><subject>Signal Transduction - radiation effects</subject><subject>VVD</subject><issn>0955-0674</issn><issn>1879-0410</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PwzAMhiMEgjH4AVxQjxxocZK2aUFCAsSXNIkL9yhJ3ZHRNaPJJu3fk2mA4MLJBz9-bT-EnFDIKNDyYpYZ1BkDBhnwDIDvkBGtRJ1CTmGXjKAuihRKkR-QQ-9nAFACq_fJAWdcUJ4XI3I7sdO34M8Tsw7Ov2OHwfXniTLBuv4yeVkEN8UegzWJcX0YXJe4NjHYdUmz7tXcGn9E9lrVeTz-qmPy-nD_eveUTl4en-9uJqkpqAhpBZyVJVeaaWQoBGvaAlpOuc4Fq4tKCa1barAQvFEtcMHyFpBrXjFNIzYm19vYxVLPsTEYr1GdXAx2roa1dMrKv53evsmpW0lRCFHH1DE5-woY3McSfZBz6zefqB7d0kvG65rxuK6KKN2iZnDeD9j-rKEgN-rlTEb1cqNeApdRfZw5_X3fz8S36whcbQGMklYWB-mNxd5gYwc0QTbO_hP_CWOplIQ</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Wittmann, Torsten</creator><creator>Dema, Alessandro</creator><creator>van Haren, Jeffrey</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3160-3547</orcidid></search><sort><creationdate>20201001</creationdate><title>Lights, cytoskeleton, action: Optogenetic control of cell dynamics</title><author>Wittmann, Torsten ; Dema, Alessandro ; van Haren, Jeffrey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-8032663ab2be2e772df50f313b472958a7bbf1ce573daf03724f0e3b382b1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Actin</topic><topic>Animals</topic><topic>Cell dynamics</topic><topic>Cry2</topic><topic>Cytoskeleton - metabolism</topic><topic>Cytoskeleton - radiation effects</topic><topic>Cytoskeleton dynamics</topic><topic>Humans</topic><topic>Light</topic><topic>LOV2</topic><topic>Microscopy</topic><topic>Microtubule</topic><topic>Motor proteins</topic><topic>Optogenetics</topic><topic>Photoactivation</topic><topic>PhyB</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>Rho GTPase</topic><topic>Signal Transduction - radiation effects</topic><topic>VVD</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wittmann, Torsten</creatorcontrib><creatorcontrib>Dema, Alessandro</creatorcontrib><creatorcontrib>van Haren, Jeffrey</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current opinion in cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wittmann, Torsten</au><au>Dema, Alessandro</au><au>van Haren, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lights, cytoskeleton, action: Optogenetic control of cell dynamics</atitle><jtitle>Current opinion in cell biology</jtitle><addtitle>Curr Opin Cell Biol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>66</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0955-0674</issn><eissn>1879-0410</eissn><abstract>Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein–protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32371345</pmid><doi>10.1016/j.ceb.2020.03.003</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3160-3547</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0955-0674
ispartof Current opinion in cell biology, 2020-10, Vol.66, p.1-10
issn 0955-0674
1879-0410
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7577957
source MEDLINE; Elsevier ScienceDirect Journals
subjects Actin
Animals
Cell dynamics
Cry2
Cytoskeleton - metabolism
Cytoskeleton - radiation effects
Cytoskeleton dynamics
Humans
Light
LOV2
Microscopy
Microtubule
Motor proteins
Optogenetics
Photoactivation
PhyB
rho GTP-Binding Proteins - metabolism
Rho GTPase
Signal Transduction - radiation effects
VVD
title Lights, cytoskeleton, action: Optogenetic control of cell dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T18%3A18%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lights,%20cytoskeleton,%20action:%20Optogenetic%20control%20of%20cell%20dynamics&rft.jtitle=Current%20opinion%20in%20cell%20biology&rft.au=Wittmann,%20Torsten&rft.date=2020-10-01&rft.volume=66&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0955-0674&rft.eissn=1879-0410&rft_id=info:doi/10.1016/j.ceb.2020.03.003&rft_dat=%3Cproquest_pubme%3E2399233828%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2399233828&rft_id=info:pmid/32371345&rft_els_id=S0955067420300454&rfr_iscdi=true