EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal

The transcriptional regulator EVI1 has an essential role in early development and haematopoiesis. However, acute myeloid leukaemia (AML) driven by aberrantly high EVI1 expression has very poor prognosis. To investigate the effects of post-translational modifications on EVI1 function, we carried out...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2020-10, Vol.11 (10), p.878-878, Article 878
Hauptverfasser: Paredes, Roberto, Kelly, James R., Geary, Bethany, Almarzouq, Batool, Schneider, Marion, Pearson, Stella, Narayanan, Prakrithi, Williamson, Andrew, Lovell, Simon C., Wiseman, Daniel H., Chadwick, John A., Jones, Nigel J., Kustikova, Olga, Schambach, Axel, Garner, Terence, Amaral, Fabio M. R., Pierce, Andrew, Stevens, Adam, Somervaille, Tim C. P., Whetton, Anthony D., Meyer, Stefan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 878
container_issue 10
container_start_page 878
container_title Cell death & disease
container_volume 11
creator Paredes, Roberto
Kelly, James R.
Geary, Bethany
Almarzouq, Batool
Schneider, Marion
Pearson, Stella
Narayanan, Prakrithi
Williamson, Andrew
Lovell, Simon C.
Wiseman, Daniel H.
Chadwick, John A.
Jones, Nigel J.
Kustikova, Olga
Schambach, Axel
Garner, Terence
Amaral, Fabio M. R.
Pierce, Andrew
Stevens, Adam
Somervaille, Tim C. P.
Whetton, Anthony D.
Meyer, Stefan
description The transcriptional regulator EVI1 has an essential role in early development and haematopoiesis. However, acute myeloid leukaemia (AML) driven by aberrantly high EVI1 expression has very poor prognosis. To investigate the effects of post-translational modifications on EVI1 function, we carried out a mass spectrometry (MS) analysis of EVI1 in AML and detected dynamic phosphorylation at serine 436 (S436). Wild-type EVI1 (EVI1-WT) with S436 available for phosphorylation, but not non-phosphorylatable EVI1-S436A, conferred haematopoietic progenitor cell self-renewal and was associated with significantly higher organised transcriptional patterns. In silico modelling of EVI1-S436 phosphorylation showed reduced affinity to CtBP1, and CtBP1 showed reduced interaction with EVI1-WT compared with EVI1-S436A. The motif harbouring S436 is a target of CDK2 and CDK3 kinases, which interacted with EVI1-WT. The methyltransferase DNMT3A bound preferentially to EVI1-WT compared with EVI1-S436A, and a hypomethylated cell population associated by EVI1-WT expression in murine haematopoietic progenitors is not maintained with EVI1-S436A. These data point to EVI1-S436 phosphorylation directing functional protein interactions for haematopoietic self-renewal. Targeting EVI1-S436 phosphorylation may be of therapeutic benefit when treating EVI1-driven leukaemia.
doi_str_mv 10.1038/s41419-020-03099-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7576810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2452978626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-a805b992e482a24d2680837973f99113ae0c36053b894fd08694ce6012d775813</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EotXSP8ABWeLCJWX8EX9ckMrSQqUWkChcLW8y2U2VtRc7adV_X2-3lNIDli2_8jwee-Yl5DWDQwbCvM-SSWYr4FCBAFvUM7LPQbJKGmOfP9J75CDnSyhDCOC1ekn2ijBcgN4nzfGvU0Y3q5jLSjeDH_sYqB_pDykUTbicyhFm2ocRk2-20Uyv-3FF5-PH74z60NJPX88vxNGd3KS4jls-49BVCQNe--EVedH5IePB_T4jP0-OL-ZfqrNvn0_nR2dVI7UcK2-gXljLURruuWy5MmCEtlp01jImPEIjFNRiYazsWjDKygYVMN5qXRsmZuTDLu9mWqyxbTCMyQ9uk_q1Tzcu-t79Gwn9yi3jldO1VqZ0dUbe3SdI8feEeXTrPjc4DD5gnLLjsuZWG8VVQd8-QS_jlEIpr1CalWlLu2eE76gmxZwTdg-fYeC2Nrqdja7Y6O5sdNtfvHlcxsOVP6YVQOyAXEJhienv2_9JewvXsqW_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471471903</pqid></control><display><type>article</type><title>EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Paredes, Roberto ; Kelly, James R. ; Geary, Bethany ; Almarzouq, Batool ; Schneider, Marion ; Pearson, Stella ; Narayanan, Prakrithi ; Williamson, Andrew ; Lovell, Simon C. ; Wiseman, Daniel H. ; Chadwick, John A. ; Jones, Nigel J. ; Kustikova, Olga ; Schambach, Axel ; Garner, Terence ; Amaral, Fabio M. R. ; Pierce, Andrew ; Stevens, Adam ; Somervaille, Tim C. P. ; Whetton, Anthony D. ; Meyer, Stefan</creator><creatorcontrib>Paredes, Roberto ; Kelly, James R. ; Geary, Bethany ; Almarzouq, Batool ; Schneider, Marion ; Pearson, Stella ; Narayanan, Prakrithi ; Williamson, Andrew ; Lovell, Simon C. ; Wiseman, Daniel H. ; Chadwick, John A. ; Jones, Nigel J. ; Kustikova, Olga ; Schambach, Axel ; Garner, Terence ; Amaral, Fabio M. R. ; Pierce, Andrew ; Stevens, Adam ; Somervaille, Tim C. P. ; Whetton, Anthony D. ; Meyer, Stefan</creatorcontrib><description>The transcriptional regulator EVI1 has an essential role in early development and haematopoiesis. However, acute myeloid leukaemia (AML) driven by aberrantly high EVI1 expression has very poor prognosis. To investigate the effects of post-translational modifications on EVI1 function, we carried out a mass spectrometry (MS) analysis of EVI1 in AML and detected dynamic phosphorylation at serine 436 (S436). Wild-type EVI1 (EVI1-WT) with S436 available for phosphorylation, but not non-phosphorylatable EVI1-S436A, conferred haematopoietic progenitor cell self-renewal and was associated with significantly higher organised transcriptional patterns. In silico modelling of EVI1-S436 phosphorylation showed reduced affinity to CtBP1, and CtBP1 showed reduced interaction with EVI1-WT compared with EVI1-S436A. The motif harbouring S436 is a target of CDK2 and CDK3 kinases, which interacted with EVI1-WT. The methyltransferase DNMT3A bound preferentially to EVI1-WT compared with EVI1-S436A, and a hypomethylated cell population associated by EVI1-WT expression in murine haematopoietic progenitors is not maintained with EVI1-S436A. These data point to EVI1-S436 phosphorylation directing functional protein interactions for haematopoietic self-renewal. Targeting EVI1-S436 phosphorylation may be of therapeutic benefit when treating EVI1-driven leukaemia.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-020-03099-0</identifier><identifier>PMID: 33082307</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/58 ; 13/1 ; 13/31 ; 14/1 ; 14/10 ; 38/1 ; 38/77 ; 38/91 ; 45/91 ; 631/67/1990/283/1897 ; 64/60 ; 692/699/67/1990/283 ; 82/1 ; 82/58 ; 96/106 ; 96/31 ; Acute myeloid leukemia ; Alcohol Oxidoreductases - metabolism ; Antibodies ; Biochemistry ; Biomedical and Life Sciences ; Cell Biology ; Cell Culture ; Cell Self Renewal - physiology ; Cell self-renewal ; Cyclin-dependent kinase 2 ; DNA (Cytosine-5-)-Methyltransferases - metabolism ; DNA Methylation - physiology ; DNA Methyltransferase 3A ; DNA Modification Methylases - metabolism ; DNA-Binding Proteins - metabolism ; Humans ; Immunology ; Leukemia ; Leukemia, Myeloid, Acute - metabolism ; Life Sciences ; Mass spectroscopy ; MDS1 and EVI1 Complex Locus Protein - metabolism ; Methyltransferase ; Phosphorylation ; Post-translation ; Progenitor cells ; Prognosis ; Protein interaction ; Serine ; Serine - metabolism ; Transcription ; Transcription Factors - metabolism</subject><ispartof>Cell death &amp; disease, 2020-10, Vol.11 (10), p.878-878, Article 878</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-a805b992e482a24d2680837973f99113ae0c36053b894fd08694ce6012d775813</citedby><cites>FETCH-LOGICAL-c474t-a805b992e482a24d2680837973f99113ae0c36053b894fd08694ce6012d775813</cites><orcidid>0000-0002-2596-2738 ; 0000-0002-1950-7325 ; 0000-0002-2283-3690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576810/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576810/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33082307$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paredes, Roberto</creatorcontrib><creatorcontrib>Kelly, James R.</creatorcontrib><creatorcontrib>Geary, Bethany</creatorcontrib><creatorcontrib>Almarzouq, Batool</creatorcontrib><creatorcontrib>Schneider, Marion</creatorcontrib><creatorcontrib>Pearson, Stella</creatorcontrib><creatorcontrib>Narayanan, Prakrithi</creatorcontrib><creatorcontrib>Williamson, Andrew</creatorcontrib><creatorcontrib>Lovell, Simon C.</creatorcontrib><creatorcontrib>Wiseman, Daniel H.</creatorcontrib><creatorcontrib>Chadwick, John A.</creatorcontrib><creatorcontrib>Jones, Nigel J.</creatorcontrib><creatorcontrib>Kustikova, Olga</creatorcontrib><creatorcontrib>Schambach, Axel</creatorcontrib><creatorcontrib>Garner, Terence</creatorcontrib><creatorcontrib>Amaral, Fabio M. R.</creatorcontrib><creatorcontrib>Pierce, Andrew</creatorcontrib><creatorcontrib>Stevens, Adam</creatorcontrib><creatorcontrib>Somervaille, Tim C. P.</creatorcontrib><creatorcontrib>Whetton, Anthony D.</creatorcontrib><creatorcontrib>Meyer, Stefan</creatorcontrib><title>EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>The transcriptional regulator EVI1 has an essential role in early development and haematopoiesis. However, acute myeloid leukaemia (AML) driven by aberrantly high EVI1 expression has very poor prognosis. To investigate the effects of post-translational modifications on EVI1 function, we carried out a mass spectrometry (MS) analysis of EVI1 in AML and detected dynamic phosphorylation at serine 436 (S436). Wild-type EVI1 (EVI1-WT) with S436 available for phosphorylation, but not non-phosphorylatable EVI1-S436A, conferred haematopoietic progenitor cell self-renewal and was associated with significantly higher organised transcriptional patterns. In silico modelling of EVI1-S436 phosphorylation showed reduced affinity to CtBP1, and CtBP1 showed reduced interaction with EVI1-WT compared with EVI1-S436A. The motif harbouring S436 is a target of CDK2 and CDK3 kinases, which interacted with EVI1-WT. The methyltransferase DNMT3A bound preferentially to EVI1-WT compared with EVI1-S436A, and a hypomethylated cell population associated by EVI1-WT expression in murine haematopoietic progenitors is not maintained with EVI1-S436A. These data point to EVI1-S436 phosphorylation directing functional protein interactions for haematopoietic self-renewal. Targeting EVI1-S436 phosphorylation may be of therapeutic benefit when treating EVI1-driven leukaemia.</description><subject>101/58</subject><subject>13/1</subject><subject>13/31</subject><subject>14/1</subject><subject>14/10</subject><subject>38/1</subject><subject>38/77</subject><subject>38/91</subject><subject>45/91</subject><subject>631/67/1990/283/1897</subject><subject>64/60</subject><subject>692/699/67/1990/283</subject><subject>82/1</subject><subject>82/58</subject><subject>96/106</subject><subject>96/31</subject><subject>Acute myeloid leukemia</subject><subject>Alcohol Oxidoreductases - metabolism</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Self Renewal - physiology</subject><subject>Cell self-renewal</subject><subject>Cyclin-dependent kinase 2</subject><subject>DNA (Cytosine-5-)-Methyltransferases - metabolism</subject><subject>DNA Methylation - physiology</subject><subject>DNA Methyltransferase 3A</subject><subject>DNA Modification Methylases - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Humans</subject><subject>Immunology</subject><subject>Leukemia</subject><subject>Leukemia, Myeloid, Acute - metabolism</subject><subject>Life Sciences</subject><subject>Mass spectroscopy</subject><subject>MDS1 and EVI1 Complex Locus Protein - metabolism</subject><subject>Methyltransferase</subject><subject>Phosphorylation</subject><subject>Post-translation</subject><subject>Progenitor cells</subject><subject>Prognosis</subject><subject>Protein interaction</subject><subject>Serine</subject><subject>Serine - metabolism</subject><subject>Transcription</subject><subject>Transcription Factors - metabolism</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1v1DAQhi0EotXSP8ABWeLCJWX8EX9ckMrSQqUWkChcLW8y2U2VtRc7adV_X2-3lNIDli2_8jwee-Yl5DWDQwbCvM-SSWYr4FCBAFvUM7LPQbJKGmOfP9J75CDnSyhDCOC1ekn2ijBcgN4nzfGvU0Y3q5jLSjeDH_sYqB_pDykUTbicyhFm2ocRk2-20Uyv-3FF5-PH74z60NJPX88vxNGd3KS4jls-49BVCQNe--EVedH5IePB_T4jP0-OL-ZfqrNvn0_nR2dVI7UcK2-gXljLURruuWy5MmCEtlp01jImPEIjFNRiYazsWjDKygYVMN5qXRsmZuTDLu9mWqyxbTCMyQ9uk_q1Tzcu-t79Gwn9yi3jldO1VqZ0dUbe3SdI8feEeXTrPjc4DD5gnLLjsuZWG8VVQd8-QS_jlEIpr1CalWlLu2eE76gmxZwTdg-fYeC2Nrqdja7Y6O5sdNtfvHlcxsOVP6YVQOyAXEJhienv2_9JewvXsqW_</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Paredes, Roberto</creator><creator>Kelly, James R.</creator><creator>Geary, Bethany</creator><creator>Almarzouq, Batool</creator><creator>Schneider, Marion</creator><creator>Pearson, Stella</creator><creator>Narayanan, Prakrithi</creator><creator>Williamson, Andrew</creator><creator>Lovell, Simon C.</creator><creator>Wiseman, Daniel H.</creator><creator>Chadwick, John A.</creator><creator>Jones, Nigel J.</creator><creator>Kustikova, Olga</creator><creator>Schambach, Axel</creator><creator>Garner, Terence</creator><creator>Amaral, Fabio M. R.</creator><creator>Pierce, Andrew</creator><creator>Stevens, Adam</creator><creator>Somervaille, Tim C. P.</creator><creator>Whetton, Anthony D.</creator><creator>Meyer, Stefan</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2596-2738</orcidid><orcidid>https://orcid.org/0000-0002-1950-7325</orcidid><orcidid>https://orcid.org/0000-0002-2283-3690</orcidid></search><sort><creationdate>20201020</creationdate><title>EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal</title><author>Paredes, Roberto ; Kelly, James R. ; Geary, Bethany ; Almarzouq, Batool ; Schneider, Marion ; Pearson, Stella ; Narayanan, Prakrithi ; Williamson, Andrew ; Lovell, Simon C. ; Wiseman, Daniel H. ; Chadwick, John A. ; Jones, Nigel J. ; Kustikova, Olga ; Schambach, Axel ; Garner, Terence ; Amaral, Fabio M. R. ; Pierce, Andrew ; Stevens, Adam ; Somervaille, Tim C. P. ; Whetton, Anthony D. ; Meyer, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-a805b992e482a24d2680837973f99113ae0c36053b894fd08694ce6012d775813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>101/58</topic><topic>13/1</topic><topic>13/31</topic><topic>14/1</topic><topic>14/10</topic><topic>38/1</topic><topic>38/77</topic><topic>38/91</topic><topic>45/91</topic><topic>631/67/1990/283/1897</topic><topic>64/60</topic><topic>692/699/67/1990/283</topic><topic>82/1</topic><topic>82/58</topic><topic>96/106</topic><topic>96/31</topic><topic>Acute myeloid leukemia</topic><topic>Alcohol Oxidoreductases - metabolism</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Self Renewal - physiology</topic><topic>Cell self-renewal</topic><topic>Cyclin-dependent kinase 2</topic><topic>DNA (Cytosine-5-)-Methyltransferases - metabolism</topic><topic>DNA Methylation - physiology</topic><topic>DNA Methyltransferase 3A</topic><topic>DNA Modification Methylases - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Humans</topic><topic>Immunology</topic><topic>Leukemia</topic><topic>Leukemia, Myeloid, Acute - metabolism</topic><topic>Life Sciences</topic><topic>Mass spectroscopy</topic><topic>MDS1 and EVI1 Complex Locus Protein - metabolism</topic><topic>Methyltransferase</topic><topic>Phosphorylation</topic><topic>Post-translation</topic><topic>Progenitor cells</topic><topic>Prognosis</topic><topic>Protein interaction</topic><topic>Serine</topic><topic>Serine - metabolism</topic><topic>Transcription</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paredes, Roberto</creatorcontrib><creatorcontrib>Kelly, James R.</creatorcontrib><creatorcontrib>Geary, Bethany</creatorcontrib><creatorcontrib>Almarzouq, Batool</creatorcontrib><creatorcontrib>Schneider, Marion</creatorcontrib><creatorcontrib>Pearson, Stella</creatorcontrib><creatorcontrib>Narayanan, Prakrithi</creatorcontrib><creatorcontrib>Williamson, Andrew</creatorcontrib><creatorcontrib>Lovell, Simon C.</creatorcontrib><creatorcontrib>Wiseman, Daniel H.</creatorcontrib><creatorcontrib>Chadwick, John A.</creatorcontrib><creatorcontrib>Jones, Nigel J.</creatorcontrib><creatorcontrib>Kustikova, Olga</creatorcontrib><creatorcontrib>Schambach, Axel</creatorcontrib><creatorcontrib>Garner, Terence</creatorcontrib><creatorcontrib>Amaral, Fabio M. R.</creatorcontrib><creatorcontrib>Pierce, Andrew</creatorcontrib><creatorcontrib>Stevens, Adam</creatorcontrib><creatorcontrib>Somervaille, Tim C. P.</creatorcontrib><creatorcontrib>Whetton, Anthony D.</creatorcontrib><creatorcontrib>Meyer, Stefan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paredes, Roberto</au><au>Kelly, James R.</au><au>Geary, Bethany</au><au>Almarzouq, Batool</au><au>Schneider, Marion</au><au>Pearson, Stella</au><au>Narayanan, Prakrithi</au><au>Williamson, Andrew</au><au>Lovell, Simon C.</au><au>Wiseman, Daniel H.</au><au>Chadwick, John A.</au><au>Jones, Nigel J.</au><au>Kustikova, Olga</au><au>Schambach, Axel</au><au>Garner, Terence</au><au>Amaral, Fabio M. R.</au><au>Pierce, Andrew</au><au>Stevens, Adam</au><au>Somervaille, Tim C. P.</au><au>Whetton, Anthony D.</au><au>Meyer, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2020-10-20</date><risdate>2020</risdate><volume>11</volume><issue>10</issue><spage>878</spage><epage>878</epage><pages>878-878</pages><artnum>878</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>The transcriptional regulator EVI1 has an essential role in early development and haematopoiesis. However, acute myeloid leukaemia (AML) driven by aberrantly high EVI1 expression has very poor prognosis. To investigate the effects of post-translational modifications on EVI1 function, we carried out a mass spectrometry (MS) analysis of EVI1 in AML and detected dynamic phosphorylation at serine 436 (S436). Wild-type EVI1 (EVI1-WT) with S436 available for phosphorylation, but not non-phosphorylatable EVI1-S436A, conferred haematopoietic progenitor cell self-renewal and was associated with significantly higher organised transcriptional patterns. In silico modelling of EVI1-S436 phosphorylation showed reduced affinity to CtBP1, and CtBP1 showed reduced interaction with EVI1-WT compared with EVI1-S436A. The motif harbouring S436 is a target of CDK2 and CDK3 kinases, which interacted with EVI1-WT. The methyltransferase DNMT3A bound preferentially to EVI1-WT compared with EVI1-S436A, and a hypomethylated cell population associated by EVI1-WT expression in murine haematopoietic progenitors is not maintained with EVI1-S436A. These data point to EVI1-S436 phosphorylation directing functional protein interactions for haematopoietic self-renewal. Targeting EVI1-S436 phosphorylation may be of therapeutic benefit when treating EVI1-driven leukaemia.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33082307</pmid><doi>10.1038/s41419-020-03099-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2596-2738</orcidid><orcidid>https://orcid.org/0000-0002-1950-7325</orcidid><orcidid>https://orcid.org/0000-0002-2283-3690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2020-10, Vol.11 (10), p.878-878, Article 878
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7576810
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 101/58
13/1
13/31
14/1
14/10
38/1
38/77
38/91
45/91
631/67/1990/283/1897
64/60
692/699/67/1990/283
82/1
82/58
96/106
96/31
Acute myeloid leukemia
Alcohol Oxidoreductases - metabolism
Antibodies
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Culture
Cell Self Renewal - physiology
Cell self-renewal
Cyclin-dependent kinase 2
DNA (Cytosine-5-)-Methyltransferases - metabolism
DNA Methylation - physiology
DNA Methyltransferase 3A
DNA Modification Methylases - metabolism
DNA-Binding Proteins - metabolism
Humans
Immunology
Leukemia
Leukemia, Myeloid, Acute - metabolism
Life Sciences
Mass spectroscopy
MDS1 and EVI1 Complex Locus Protein - metabolism
Methyltransferase
Phosphorylation
Post-translation
Progenitor cells
Prognosis
Protein interaction
Serine
Serine - metabolism
Transcription
Transcription Factors - metabolism
title EVI1 phosphorylation at S436 regulates interactions with CtBP1 and DNMT3A and promotes self-renewal
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A34%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EVI1%20phosphorylation%20at%20S436%20regulates%20interactions%20with%20CtBP1%20and%20DNMT3A%20and%20promotes%20self-renewal&rft.jtitle=Cell%20death%20&%20disease&rft.au=Paredes,%20Roberto&rft.date=2020-10-20&rft.volume=11&rft.issue=10&rft.spage=878&rft.epage=878&rft.pages=878-878&rft.artnum=878&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-020-03099-0&rft_dat=%3Cproquest_pubme%3E2452978626%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471471903&rft_id=info:pmid/33082307&rfr_iscdi=true