A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes

The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We used an informatics-based approach to develop a transcriptional signature of β-cell GA stress usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2020-11, Vol.69 (11), p.2364-2376
Hauptverfasser: Bone, Robert N, Oyebamiji, Olufunmilola, Talware, Sayali, Selvaraj, Sharmila, Krishnan, Preethi, Syed, Farooq, Wu, Huanmei, Evans-Molina, Carmella
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2376
container_issue 11
container_start_page 2364
container_title Diabetes (New York, N.Y.)
container_volume 69
creator Bone, Robert N
Oyebamiji, Olufunmilola
Talware, Sayali
Selvaraj, Sharmila
Krishnan, Preethi
Syed, Farooq
Wu, Huanmei
Evans-Molina, Carmella
description The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We used an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray data sets generated using human islets from donors with diabetes and islets where type 1 (T1D) and type 2 (T2D) diabetes had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. In parallel, we generated an RNA-sequencing data set from human islets treated with brefeldin A (BFA), a known GA stress inducer. Overlapping the T1D and T2D groups with the BFA data set, we identified 120 and 204 differentially expressed genes, respectively. In both the T1D and T2D models, pathway analyses revealed that the top pathways were associated with GA integrity, organization, and trafficking. Quantitative RT-PCR was used to validate a common signature of GA stress that included , , , and Taken together, these data indicate that GA-associated genes are dysregulated in diabetes and identify putative markers of β-cell GA stress.
doi_str_mv 10.2337/db20-0636
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7576569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436397222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-232d552d1ca7b202feb11d29a361c3809a38a0f085c741e118fb6d602494b3a33</originalsourceid><addsrcrecordid>eNpdkc1KxDAQx4Moun4cfAEJeNFDNcm0SXMRlvUTFjysC95C2qZrlm5Tk1bwtXwQn8ksfqAyh5lhfvyZmT9Ch5ScMQBxXhWMJIQD30AjKkEmwMTjJhoRQllChRQ7aDeEJSGEx9hGO8ByFjs5QvMxnrhVN_S6t67VDR53nXe6fMK18_jS1La17QJrPLOLVveDN9jV-P0tmZimwTeuWVg8670JAdsWX1pdmN6EfbRV6yaYg6-8h-bXVw-T22R6f3M3GU-TEgD6hAGrsoxVtNQinsBqU1BaMamB0xJyEotck5rkWSlSaijN64JXnLBUpgVogD108anbDcXKVKVpe68b1Xm70v5VOW3V30lrn9TCvSiRCZ5xGQVOvgS8ex5M6NXKhjKeplvjhqBYChykYIxF9PgfunSDjy9bU5lMIROCROr0kyq9C8Gb-mcZStTaLLU2S63NiuzR7-1_yG934AOJE46T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459435770</pqid></control><display><type>article</type><title>A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Bone, Robert N ; Oyebamiji, Olufunmilola ; Talware, Sayali ; Selvaraj, Sharmila ; Krishnan, Preethi ; Syed, Farooq ; Wu, Huanmei ; Evans-Molina, Carmella</creator><creatorcontrib>Bone, Robert N ; Oyebamiji, Olufunmilola ; Talware, Sayali ; Selvaraj, Sharmila ; Krishnan, Preethi ; Syed, Farooq ; Wu, Huanmei ; Evans-Molina, Carmella</creatorcontrib><description>The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We used an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray data sets generated using human islets from donors with diabetes and islets where type 1 (T1D) and type 2 (T2D) diabetes had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. In parallel, we generated an RNA-sequencing data set from human islets treated with brefeldin A (BFA), a known GA stress inducer. Overlapping the T1D and T2D groups with the BFA data set, we identified 120 and 204 differentially expressed genes, respectively. In both the T1D and T2D models, pathway analyses revealed that the top pathways were associated with GA integrity, organization, and trafficking. Quantitative RT-PCR was used to validate a common signature of GA stress that included , , , and Taken together, these data indicate that GA-associated genes are dysregulated in diabetes and identify putative markers of β-cell GA stress.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db20-0636</identifier><identifier>PMID: 32820009</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Activating transcription factor 3 ; Beta cells ; Brefeldin A ; Computer applications ; Computer Simulation ; Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 1 - metabolism ; Diabetes Mellitus, Type 2 - metabolism ; DNA microarrays ; Gene Expression Regulation - physiology ; Golgi Apparatus - physiology ; Golgi cells ; Health informatics ; Humans ; Inflammation ; Informatics ; Insulin ; Islet Studies ; Islets of Langerhans - metabolism ; Models, Biological ; Polymerase chain reaction ; Protein Array Analysis ; Ribonucleic acid ; RNA ; Stress, Physiological ; Transcription</subject><ispartof>Diabetes (New York, N.Y.), 2020-11, Vol.69 (11), p.2364-2376</ispartof><rights>2020 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Nov 1, 2020</rights><rights>2020 by the American Diabetes Association 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-232d552d1ca7b202feb11d29a361c3809a38a0f085c741e118fb6d602494b3a33</citedby><cites>FETCH-LOGICAL-c333t-232d552d1ca7b202feb11d29a361c3809a38a0f085c741e118fb6d602494b3a33</cites><orcidid>0000-0001-7764-8663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576569/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7576569/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32820009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bone, Robert N</creatorcontrib><creatorcontrib>Oyebamiji, Olufunmilola</creatorcontrib><creatorcontrib>Talware, Sayali</creatorcontrib><creatorcontrib>Selvaraj, Sharmila</creatorcontrib><creatorcontrib>Krishnan, Preethi</creatorcontrib><creatorcontrib>Syed, Farooq</creatorcontrib><creatorcontrib>Wu, Huanmei</creatorcontrib><creatorcontrib>Evans-Molina, Carmella</creatorcontrib><title>A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We used an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray data sets generated using human islets from donors with diabetes and islets where type 1 (T1D) and type 2 (T2D) diabetes had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. In parallel, we generated an RNA-sequencing data set from human islets treated with brefeldin A (BFA), a known GA stress inducer. Overlapping the T1D and T2D groups with the BFA data set, we identified 120 and 204 differentially expressed genes, respectively. In both the T1D and T2D models, pathway analyses revealed that the top pathways were associated with GA integrity, organization, and trafficking. Quantitative RT-PCR was used to validate a common signature of GA stress that included , , , and Taken together, these data indicate that GA-associated genes are dysregulated in diabetes and identify putative markers of β-cell GA stress.</description><subject>Activating transcription factor 3</subject><subject>Beta cells</subject><subject>Brefeldin A</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>DNA microarrays</subject><subject>Gene Expression Regulation - physiology</subject><subject>Golgi Apparatus - physiology</subject><subject>Golgi cells</subject><subject>Health informatics</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Informatics</subject><subject>Insulin</subject><subject>Islet Studies</subject><subject>Islets of Langerhans - metabolism</subject><subject>Models, Biological</subject><subject>Polymerase chain reaction</subject><subject>Protein Array Analysis</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Stress, Physiological</subject><subject>Transcription</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1KxDAQx4Moun4cfAEJeNFDNcm0SXMRlvUTFjysC95C2qZrlm5Tk1bwtXwQn8ksfqAyh5lhfvyZmT9Ch5ScMQBxXhWMJIQD30AjKkEmwMTjJhoRQllChRQ7aDeEJSGEx9hGO8ByFjs5QvMxnrhVN_S6t67VDR53nXe6fMK18_jS1La17QJrPLOLVveDN9jV-P0tmZimwTeuWVg8670JAdsWX1pdmN6EfbRV6yaYg6-8h-bXVw-T22R6f3M3GU-TEgD6hAGrsoxVtNQinsBqU1BaMamB0xJyEotck5rkWSlSaijN64JXnLBUpgVogD108anbDcXKVKVpe68b1Xm70v5VOW3V30lrn9TCvSiRCZ5xGQVOvgS8ex5M6NXKhjKeplvjhqBYChykYIxF9PgfunSDjy9bU5lMIROCROr0kyq9C8Gb-mcZStTaLLU2S63NiuzR7-1_yG934AOJE46T</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Bone, Robert N</creator><creator>Oyebamiji, Olufunmilola</creator><creator>Talware, Sayali</creator><creator>Selvaraj, Sharmila</creator><creator>Krishnan, Preethi</creator><creator>Syed, Farooq</creator><creator>Wu, Huanmei</creator><creator>Evans-Molina, Carmella</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7764-8663</orcidid></search><sort><creationdate>20201101</creationdate><title>A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes</title><author>Bone, Robert N ; Oyebamiji, Olufunmilola ; Talware, Sayali ; Selvaraj, Sharmila ; Krishnan, Preethi ; Syed, Farooq ; Wu, Huanmei ; Evans-Molina, Carmella</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-232d552d1ca7b202feb11d29a361c3809a38a0f085c741e118fb6d602494b3a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activating transcription factor 3</topic><topic>Beta cells</topic><topic>Brefeldin A</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>DNA microarrays</topic><topic>Gene Expression Regulation - physiology</topic><topic>Golgi Apparatus - physiology</topic><topic>Golgi cells</topic><topic>Health informatics</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Informatics</topic><topic>Insulin</topic><topic>Islet Studies</topic><topic>Islets of Langerhans - metabolism</topic><topic>Models, Biological</topic><topic>Polymerase chain reaction</topic><topic>Protein Array Analysis</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Stress, Physiological</topic><topic>Transcription</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bone, Robert N</creatorcontrib><creatorcontrib>Oyebamiji, Olufunmilola</creatorcontrib><creatorcontrib>Talware, Sayali</creatorcontrib><creatorcontrib>Selvaraj, Sharmila</creatorcontrib><creatorcontrib>Krishnan, Preethi</creatorcontrib><creatorcontrib>Syed, Farooq</creatorcontrib><creatorcontrib>Wu, Huanmei</creatorcontrib><creatorcontrib>Evans-Molina, Carmella</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bone, Robert N</au><au>Oyebamiji, Olufunmilola</au><au>Talware, Sayali</au><au>Selvaraj, Sharmila</au><au>Krishnan, Preethi</au><au>Syed, Farooq</au><au>Wu, Huanmei</au><au>Evans-Molina, Carmella</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>69</volume><issue>11</issue><spage>2364</spage><epage>2376</epage><pages>2364-2376</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We used an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray data sets generated using human islets from donors with diabetes and islets where type 1 (T1D) and type 2 (T2D) diabetes had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. In parallel, we generated an RNA-sequencing data set from human islets treated with brefeldin A (BFA), a known GA stress inducer. Overlapping the T1D and T2D groups with the BFA data set, we identified 120 and 204 differentially expressed genes, respectively. In both the T1D and T2D models, pathway analyses revealed that the top pathways were associated with GA integrity, organization, and trafficking. Quantitative RT-PCR was used to validate a common signature of GA stress that included , , , and Taken together, these data indicate that GA-associated genes are dysregulated in diabetes and identify putative markers of β-cell GA stress.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>32820009</pmid><doi>10.2337/db20-0636</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7764-8663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2020-11, Vol.69 (11), p.2364-2376
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7576569
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Activating transcription factor 3
Beta cells
Brefeldin A
Computer applications
Computer Simulation
Diabetes
Diabetes mellitus (insulin dependent)
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 1 - metabolism
Diabetes Mellitus, Type 2 - metabolism
DNA microarrays
Gene Expression Regulation - physiology
Golgi Apparatus - physiology
Golgi cells
Health informatics
Humans
Inflammation
Informatics
Insulin
Islet Studies
Islets of Langerhans - metabolism
Models, Biological
Polymerase chain reaction
Protein Array Analysis
Ribonucleic acid
RNA
Stress, Physiological
Transcription
title A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Approach%20for%20Defining%20a%20Signature%20of%20%CE%B2-Cell%20Golgi%20Stress%20in%20Diabetes&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Bone,%20Robert%20N&rft.date=2020-11-01&rft.volume=69&rft.issue=11&rft.spage=2364&rft.epage=2376&rft.pages=2364-2376&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db20-0636&rft_dat=%3Cproquest_pubme%3E2436397222%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2459435770&rft_id=info:pmid/32820009&rfr_iscdi=true