Quantifying the distribution of protein oligomerization degree reflects cellular information capacity

The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-10, Vol.10 (1), p.17689-17689, Article 17689
Hauptverfasser: Danielli, Lena, Li, Ximing, Tuller, Tamir, Daniel, Ramez
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17689
container_issue 1
container_start_page 17689
container_title Scientific reports
container_volume 10
creator Danielli, Lena
Li, Ximing
Tuller, Tamir
Daniel, Ramez
description The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems.
doi_str_mv 10.1038/s41598-020-74811-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7573690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505574397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-1666e2ea732f2b7d3c2b9bfbd8ac92806718a071a183c060a64fd047d9f355743</originalsourceid><addsrcrecordid>eNp9kUtrFjEUhoMottT-ARcy4MbNaO6XjSDFGxRKoV2HTCaZpswkn0lG-Pz1pt_UWl00mxx4n_PmnLwAvEbwPYJEfigUMSV7iGEvqESoZ8_AMYaU9Zhg_PxRfQROS7mF7TCsKFIvwREhUAhJ5TFwl6uJNfh9iFNXb1w3hlJzGNYaUuyS73Y5VRdaOYcpLS6HX-YgjW7KznXZ-dnZWjrr5nmdTe5C9CkvG2TNzthQ96_AC2_m4k7v7xNw_eXz1dm3_vzi6_ezT-e95ZDVHnHOHXZGEOzxIEZi8aAGP4zSWIUl5AJJAwUySBILOTSc-hFSMSpPGBOUnICPm-9uHRY3WhdrNrPe5bCYvNfJBP2vEsONntJPLZggXMFm8O7eIKcfqytVL6HcrWaiS2vRmDLMIEQYN_Ttf-htWnNs62nMGGdUUKWepuBhaCUahTfK5lRK-9OHkRHUd3HrLW7d4taHuDVrTW8eL_vQ8ifcBpANKE2Kk8t_337C9jenQbcR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505574397</pqid></control><display><type>article</type><title>Quantifying the distribution of protein oligomerization degree reflects cellular information capacity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Danielli, Lena ; Li, Ximing ; Tuller, Tamir ; Daniel, Ramez</creator><creatorcontrib>Danielli, Lena ; Li, Ximing ; Tuller, Tamir ; Daniel, Ramez</creatorcontrib><description>The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-74811-5</identifier><identifier>PMID: 33077848</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/553/1044 ; 631/553/2695 ; 631/553/2696 ; 631/553/552 ; Animals ; Biopolymers - metabolism ; Computational Biology ; Humanities and Social Sciences ; Humans ; Metabolic pathways ; multidisciplinary ; Oligomerization ; Protein biosynthesis ; Protein Interaction Mapping ; Protein synthesis ; Proteins ; Proteins - metabolism ; Proteomes ; Science ; Science (multidisciplinary) ; Synthetic Biology</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.17689-17689, Article 17689</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-1666e2ea732f2b7d3c2b9bfbd8ac92806718a071a183c060a64fd047d9f355743</citedby><cites>FETCH-LOGICAL-c605t-1666e2ea732f2b7d3c2b9bfbd8ac92806718a071a183c060a64fd047d9f355743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573690/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573690/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33077848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danielli, Lena</creatorcontrib><creatorcontrib>Li, Ximing</creatorcontrib><creatorcontrib>Tuller, Tamir</creatorcontrib><creatorcontrib>Daniel, Ramez</creatorcontrib><title>Quantifying the distribution of protein oligomerization degree reflects cellular information capacity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems.</description><subject>631/553/1044</subject><subject>631/553/2695</subject><subject>631/553/2696</subject><subject>631/553/552</subject><subject>Animals</subject><subject>Biopolymers - metabolism</subject><subject>Computational Biology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Metabolic pathways</subject><subject>multidisciplinary</subject><subject>Oligomerization</subject><subject>Protein biosynthesis</subject><subject>Protein Interaction Mapping</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Proteomes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synthetic Biology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtrFjEUhoMottT-ARcy4MbNaO6XjSDFGxRKoV2HTCaZpswkn0lG-Pz1pt_UWl00mxx4n_PmnLwAvEbwPYJEfigUMSV7iGEvqESoZ8_AMYaU9Zhg_PxRfQROS7mF7TCsKFIvwREhUAhJ5TFwl6uJNfh9iFNXb1w3hlJzGNYaUuyS73Y5VRdaOYcpLS6HX-YgjW7KznXZ-dnZWjrr5nmdTe5C9CkvG2TNzthQ96_AC2_m4k7v7xNw_eXz1dm3_vzi6_ezT-e95ZDVHnHOHXZGEOzxIEZi8aAGP4zSWIUl5AJJAwUySBILOTSc-hFSMSpPGBOUnICPm-9uHRY3WhdrNrPe5bCYvNfJBP2vEsONntJPLZggXMFm8O7eIKcfqytVL6HcrWaiS2vRmDLMIEQYN_Ttf-htWnNs62nMGGdUUKWepuBhaCUahTfK5lRK-9OHkRHUd3HrLW7d4taHuDVrTW8eL_vQ8ifcBpANKE2Kk8t_337C9jenQbcR</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Danielli, Lena</creator><creator>Li, Ximing</creator><creator>Tuller, Tamir</creator><creator>Daniel, Ramez</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201019</creationdate><title>Quantifying the distribution of protein oligomerization degree reflects cellular information capacity</title><author>Danielli, Lena ; Li, Ximing ; Tuller, Tamir ; Daniel, Ramez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-1666e2ea732f2b7d3c2b9bfbd8ac92806718a071a183c060a64fd047d9f355743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/553/1044</topic><topic>631/553/2695</topic><topic>631/553/2696</topic><topic>631/553/552</topic><topic>Animals</topic><topic>Biopolymers - metabolism</topic><topic>Computational Biology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Metabolic pathways</topic><topic>multidisciplinary</topic><topic>Oligomerization</topic><topic>Protein biosynthesis</topic><topic>Protein Interaction Mapping</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Proteomes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synthetic Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danielli, Lena</creatorcontrib><creatorcontrib>Li, Ximing</creatorcontrib><creatorcontrib>Tuller, Tamir</creatorcontrib><creatorcontrib>Daniel, Ramez</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danielli, Lena</au><au>Li, Ximing</au><au>Tuller, Tamir</au><au>Daniel, Ramez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the distribution of protein oligomerization degree reflects cellular information capacity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-19</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>17689</spage><epage>17689</epage><pages>17689-17689</pages><artnum>17689</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33077848</pmid><doi>10.1038/s41598-020-74811-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-10, Vol.10 (1), p.17689-17689, Article 17689
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7573690
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects 631/553/1044
631/553/2695
631/553/2696
631/553/552
Animals
Biopolymers - metabolism
Computational Biology
Humanities and Social Sciences
Humans
Metabolic pathways
multidisciplinary
Oligomerization
Protein biosynthesis
Protein Interaction Mapping
Protein synthesis
Proteins
Proteins - metabolism
Proteomes
Science
Science (multidisciplinary)
Synthetic Biology
title Quantifying the distribution of protein oligomerization degree reflects cellular information capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20distribution%20of%20protein%20oligomerization%20degree%20reflects%20cellular%20information%20capacity&rft.jtitle=Scientific%20reports&rft.au=Danielli,%20Lena&rft.date=2020-10-19&rft.volume=10&rft.issue=1&rft.spage=17689&rft.epage=17689&rft.pages=17689-17689&rft.artnum=17689&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-74811-5&rft_dat=%3Cproquest_pubme%3E2505574397%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505574397&rft_id=info:pmid/33077848&rfr_iscdi=true