Quantifying the distribution of protein oligomerization degree reflects cellular information capacity
The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-10, Vol.10 (1), p.17689-17689, Article 17689 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17689 |
---|---|
container_issue | 1 |
container_start_page | 17689 |
container_title | Scientific reports |
container_volume | 10 |
creator | Danielli, Lena Li, Ximing Tuller, Tamir Daniel, Ramez |
description | The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems. |
doi_str_mv | 10.1038/s41598-020-74811-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7573690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2505574397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-1666e2ea732f2b7d3c2b9bfbd8ac92806718a071a183c060a64fd047d9f355743</originalsourceid><addsrcrecordid>eNp9kUtrFjEUhoMottT-ARcy4MbNaO6XjSDFGxRKoV2HTCaZpswkn0lG-Pz1pt_UWl00mxx4n_PmnLwAvEbwPYJEfigUMSV7iGEvqESoZ8_AMYaU9Zhg_PxRfQROS7mF7TCsKFIvwREhUAhJ5TFwl6uJNfh9iFNXb1w3hlJzGNYaUuyS73Y5VRdaOYcpLS6HX-YgjW7KznXZ-dnZWjrr5nmdTe5C9CkvG2TNzthQ96_AC2_m4k7v7xNw_eXz1dm3_vzi6_ezT-e95ZDVHnHOHXZGEOzxIEZi8aAGP4zSWIUl5AJJAwUySBILOTSc-hFSMSpPGBOUnICPm-9uHRY3WhdrNrPe5bCYvNfJBP2vEsONntJPLZggXMFm8O7eIKcfqytVL6HcrWaiS2vRmDLMIEQYN_Ttf-htWnNs62nMGGdUUKWepuBhaCUahTfK5lRK-9OHkRHUd3HrLW7d4taHuDVrTW8eL_vQ8ifcBpANKE2Kk8t_337C9jenQbcR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505574397</pqid></control><display><type>article</type><title>Quantifying the distribution of protein oligomerization degree reflects cellular information capacity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Danielli, Lena ; Li, Ximing ; Tuller, Tamir ; Daniel, Ramez</creator><creatorcontrib>Danielli, Lena ; Li, Ximing ; Tuller, Tamir ; Daniel, Ramez</creatorcontrib><description>The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-74811-5</identifier><identifier>PMID: 33077848</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/553/1044 ; 631/553/2695 ; 631/553/2696 ; 631/553/552 ; Animals ; Biopolymers - metabolism ; Computational Biology ; Humanities and Social Sciences ; Humans ; Metabolic pathways ; multidisciplinary ; Oligomerization ; Protein biosynthesis ; Protein Interaction Mapping ; Protein synthesis ; Proteins ; Proteins - metabolism ; Proteomes ; Science ; Science (multidisciplinary) ; Synthetic Biology</subject><ispartof>Scientific reports, 2020-10, Vol.10 (1), p.17689-17689, Article 17689</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-1666e2ea732f2b7d3c2b9bfbd8ac92806718a071a183c060a64fd047d9f355743</citedby><cites>FETCH-LOGICAL-c605t-1666e2ea732f2b7d3c2b9bfbd8ac92806718a071a183c060a64fd047d9f355743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573690/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7573690/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,27905,27906,41101,42170,51557,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33077848$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danielli, Lena</creatorcontrib><creatorcontrib>Li, Ximing</creatorcontrib><creatorcontrib>Tuller, Tamir</creatorcontrib><creatorcontrib>Daniel, Ramez</creatorcontrib><title>Quantifying the distribution of protein oligomerization degree reflects cellular information capacity</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems.</description><subject>631/553/1044</subject><subject>631/553/2695</subject><subject>631/553/2696</subject><subject>631/553/552</subject><subject>Animals</subject><subject>Biopolymers - metabolism</subject><subject>Computational Biology</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Metabolic pathways</subject><subject>multidisciplinary</subject><subject>Oligomerization</subject><subject>Protein biosynthesis</subject><subject>Protein Interaction Mapping</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Proteins - metabolism</subject><subject>Proteomes</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Synthetic Biology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtrFjEUhoMottT-ARcy4MbNaO6XjSDFGxRKoV2HTCaZpswkn0lG-Pz1pt_UWl00mxx4n_PmnLwAvEbwPYJEfigUMSV7iGEvqESoZ8_AMYaU9Zhg_PxRfQROS7mF7TCsKFIvwREhUAhJ5TFwl6uJNfh9iFNXb1w3hlJzGNYaUuyS73Y5VRdaOYcpLS6HX-YgjW7KznXZ-dnZWjrr5nmdTe5C9CkvG2TNzthQ96_AC2_m4k7v7xNw_eXz1dm3_vzi6_ezT-e95ZDVHnHOHXZGEOzxIEZi8aAGP4zSWIUl5AJJAwUySBILOTSc-hFSMSpPGBOUnICPm-9uHRY3WhdrNrPe5bCYvNfJBP2vEsONntJPLZggXMFm8O7eIKcfqytVL6HcrWaiS2vRmDLMIEQYN_Ttf-htWnNs62nMGGdUUKWepuBhaCUahTfK5lRK-9OHkRHUd3HrLW7d4taHuDVrTW8eL_vQ8ifcBpANKE2Kk8t_337C9jenQbcR</recordid><startdate>20201019</startdate><enddate>20201019</enddate><creator>Danielli, Lena</creator><creator>Li, Ximing</creator><creator>Tuller, Tamir</creator><creator>Daniel, Ramez</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201019</creationdate><title>Quantifying the distribution of protein oligomerization degree reflects cellular information capacity</title><author>Danielli, Lena ; Li, Ximing ; Tuller, Tamir ; Daniel, Ramez</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-1666e2ea732f2b7d3c2b9bfbd8ac92806718a071a183c060a64fd047d9f355743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/553/1044</topic><topic>631/553/2695</topic><topic>631/553/2696</topic><topic>631/553/552</topic><topic>Animals</topic><topic>Biopolymers - metabolism</topic><topic>Computational Biology</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Metabolic pathways</topic><topic>multidisciplinary</topic><topic>Oligomerization</topic><topic>Protein biosynthesis</topic><topic>Protein Interaction Mapping</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Proteins - metabolism</topic><topic>Proteomes</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Synthetic Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danielli, Lena</creatorcontrib><creatorcontrib>Li, Ximing</creatorcontrib><creatorcontrib>Tuller, Tamir</creatorcontrib><creatorcontrib>Daniel, Ramez</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danielli, Lena</au><au>Li, Ximing</au><au>Tuller, Tamir</au><au>Daniel, Ramez</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantifying the distribution of protein oligomerization degree reflects cellular information capacity</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-10-19</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>17689</spage><epage>17689</epage><pages>17689-17689</pages><artnum>17689</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The generation of information, energy and biomass in living cells involves integrated processes that optimally evolve into complex and robust cellular networks. Protein homo-oligomerization, which is correlated with cooperativity in biology, is one means of scaling the complexity of protein networks. It can play critical roles in determining the sensitivity of genetic regulatory circuits and metabolic pathways. Therefore, understanding the roles of oligomerization may lead to new approaches of probing biological functions. Here, we analyzed the frequency of protein oligomerization degree in the cell proteome of nine different organisms, and then, we asked whether there are design trade-offs between protein oligomerization, information precision and energy costs of protein synthesis. Our results indicate that there is an upper limit for the degree of protein oligomerization, possibly because of the trade-off between cellular resource limitations and the information precision involved in biochemical reaction networks. These findings can explain the principles of cellular architecture design and provide a quantitative tool to scale synthetic biological systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33077848</pmid><doi>10.1038/s41598-020-74811-5</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-10, Vol.10 (1), p.17689-17689, Article 17689 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7573690 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | 631/553/1044 631/553/2695 631/553/2696 631/553/552 Animals Biopolymers - metabolism Computational Biology Humanities and Social Sciences Humans Metabolic pathways multidisciplinary Oligomerization Protein biosynthesis Protein Interaction Mapping Protein synthesis Proteins Proteins - metabolism Proteomes Science Science (multidisciplinary) Synthetic Biology |
title | Quantifying the distribution of protein oligomerization degree reflects cellular information capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A27%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantifying%20the%20distribution%20of%20protein%20oligomerization%20degree%20reflects%20cellular%20information%20capacity&rft.jtitle=Scientific%20reports&rft.au=Danielli,%20Lena&rft.date=2020-10-19&rft.volume=10&rft.issue=1&rft.spage=17689&rft.epage=17689&rft.pages=17689-17689&rft.artnum=17689&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-74811-5&rft_dat=%3Cproquest_pubme%3E2505574397%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505574397&rft_id=info:pmid/33077848&rfr_iscdi=true |