The Effect of Registration on Voxel-Wise Tofts Model Parameters and Uncertainties from DCE-MRI of Early-Stage Breast Cancer Patients Using 3DSlicer
We quantitatively investigate the influence of image registration, using open-source software (3DSlicer), on kinetic analysis (Tofts model) of dynamic contrast enhanced MRI of early-stage breast cancer patients. We also show that registration computation time can be reduced by reducing the percent s...
Gespeichert in:
Veröffentlicht in: | Journal of digital imaging 2020-10, Vol.33 (5), p.1065-1072 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1072 |
---|---|
container_issue | 5 |
container_start_page | 1065 |
container_title | Journal of digital imaging |
container_volume | 33 |
creator | Mouawad, Matthew Biernaski, Heather Brackstone, Muriel Lock, Michael Kornecki, Anat Shmuilovich, Olga Ben-Nachum, Ilanit Prato, Frank S. Thompson, R. Terry Gaede, Stewart Gelman, Neil |
description | We quantitatively investigate the influence of image registration, using open-source software (3DSlicer), on kinetic analysis (Tofts model) of dynamic contrast enhanced MRI of early-stage breast cancer patients. We also show that registration computation time can be reduced by reducing the percent sampling (PS) of voxels used for estimation of the cost function. DCE-MRI breast images were acquired on a 3T-PET/MRI system in 13 patients with early-stage breast cancer who were scanned in a prone radiotherapy position. Images were registered using a BSpline transformation with a 2 cm isotropic grid at 100, 20, 5, 1, and 0.5PS (BRAINSFit in 3DSlicer). Signal enhancement curves were analyzed voxel-by-voxel using the Tofts kinetic model. Comparing unregistered with registered groups, we found a significant change in the 90th percentile of the voxel-wise distribution of K
trans
. We also found a significant reduction in the following: (1) in the standard error (uncertainty) of the parameter value estimation, (2) the number of voxel fits providing unphysical values for the extracellular-extravascular volume fraction (
v
e
> 1), and (3) goodness of fit. We found no significant differences in the median of parameter value distributions (K
trans
,
v
e
) between unregistered and registered images. Differences between parameters and uncertainties obtained using 100PS versus 20PS were small and statistically insignificant. As such, computation time can be reduced by a factor of 2, on average, by using 20PS while not affecting the kinetic fit. The methods outlined here are important for studies including a large number of post-contrast images or number of patient images. |
doi_str_mv | 10.1007/s10278-020-00374-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7572994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2430378848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-7565b9ac1d7648b14fb2bd79eb35b0ddfdc90fc2bd199710ae0236e9ae0e9f823</originalsourceid><addsrcrecordid>eNp9kU1vEzEQhi0EoiHwBzggS1y4GPyxu15fkCANUKkVqE2Am-XdHW9dbexiO1X7O_jDOKSUjwOSpZFm3nk8My9CTxl9ySiVrxKjXLaEckooFbIizT00Yw1rieTy6300o62ShLWtOkCPUrqglMlaVg_RgeCyagWlM_R9dQ54aS30GQeLT2F0KUeTXfC4vM_hGibyxSXAq2BzwidhgAl_MtFsIENM2PgBr30PMRvns4OEbQwbfLhYkpPTox1zaeJ0Q86yGQG_jWBSxguz6yiY0uALdZ2cH7E4PJtcyT9GD6yZEjy5jXO0frdcLT6Q44_vjxZvjklfySoTWTd1p0zPBtlUbccq2_FukAo6UXd0GOzQK2r7kmNKSUYNUC4aUCWCsi0Xc_R6z73cdhsY-jJKNJO-jG5j4o0Oxum_K96d6zFc6XJFrlRVAC9uATF820LKeuNSD9NkPIRt0rwSxZe2Lbeeo-f_SC_CNvqynuZ1w5paqLouKr5X9TGkFMHeDcOo3nmu957r4rn-6bluStOzP9e4a_llchGIvSCVkh8h_v77P9gfddC5Eg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2561653955</pqid></control><display><type>article</type><title>The Effect of Registration on Voxel-Wise Tofts Model Parameters and Uncertainties from DCE-MRI of Early-Stage Breast Cancer Patients Using 3DSlicer</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Mouawad, Matthew ; Biernaski, Heather ; Brackstone, Muriel ; Lock, Michael ; Kornecki, Anat ; Shmuilovich, Olga ; Ben-Nachum, Ilanit ; Prato, Frank S. ; Thompson, R. Terry ; Gaede, Stewart ; Gelman, Neil</creator><creatorcontrib>Mouawad, Matthew ; Biernaski, Heather ; Brackstone, Muriel ; Lock, Michael ; Kornecki, Anat ; Shmuilovich, Olga ; Ben-Nachum, Ilanit ; Prato, Frank S. ; Thompson, R. Terry ; Gaede, Stewart ; Gelman, Neil</creatorcontrib><description>We quantitatively investigate the influence of image registration, using open-source software (3DSlicer), on kinetic analysis (Tofts model) of dynamic contrast enhanced MRI of early-stage breast cancer patients. We also show that registration computation time can be reduced by reducing the percent sampling (PS) of voxels used for estimation of the cost function. DCE-MRI breast images were acquired on a 3T-PET/MRI system in 13 patients with early-stage breast cancer who were scanned in a prone radiotherapy position. Images were registered using a BSpline transformation with a 2 cm isotropic grid at 100, 20, 5, 1, and 0.5PS (BRAINSFit in 3DSlicer). Signal enhancement curves were analyzed voxel-by-voxel using the Tofts kinetic model. Comparing unregistered with registered groups, we found a significant change in the 90th percentile of the voxel-wise distribution of K
trans
. We also found a significant reduction in the following: (1) in the standard error (uncertainty) of the parameter value estimation, (2) the number of voxel fits providing unphysical values for the extracellular-extravascular volume fraction (
v
e
> 1), and (3) goodness of fit. We found no significant differences in the median of parameter value distributions (K
trans
,
v
e
) between unregistered and registered images. Differences between parameters and uncertainties obtained using 100PS versus 20PS were small and statistically insignificant. As such, computation time can be reduced by a factor of 2, on average, by using 20PS while not affecting the kinetic fit. The methods outlined here are important for studies including a large number of post-contrast images or number of patient images.</description><identifier>ISSN: 0897-1889</identifier><identifier>EISSN: 1618-727X</identifier><identifier>DOI: 10.1007/s10278-020-00374-6</identifier><identifier>PMID: 32748300</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Breast cancer ; Computing time ; Cost function ; Goodness of fit ; Image acquisition ; Image contrast ; Image registration ; Imaging ; Magnetic resonance imaging ; Mathematical models ; Medical imaging ; Medicine ; Medicine & Public Health ; Parameter estimation ; Parameter uncertainty ; Positron emission ; Radiation therapy ; Radiology ; Registration ; Source code ; Standard error ; Tomography</subject><ispartof>Journal of digital imaging, 2020-10, Vol.33 (5), p.1065-1072</ispartof><rights>Society for Imaging Informatics in Medicine 2020</rights><rights>Society for Imaging Informatics in Medicine 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-7565b9ac1d7648b14fb2bd79eb35b0ddfdc90fc2bd199710ae0236e9ae0e9f823</citedby><cites>FETCH-LOGICAL-c474t-7565b9ac1d7648b14fb2bd79eb35b0ddfdc90fc2bd199710ae0236e9ae0e9f823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7572994/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7572994/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32748300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouawad, Matthew</creatorcontrib><creatorcontrib>Biernaski, Heather</creatorcontrib><creatorcontrib>Brackstone, Muriel</creatorcontrib><creatorcontrib>Lock, Michael</creatorcontrib><creatorcontrib>Kornecki, Anat</creatorcontrib><creatorcontrib>Shmuilovich, Olga</creatorcontrib><creatorcontrib>Ben-Nachum, Ilanit</creatorcontrib><creatorcontrib>Prato, Frank S.</creatorcontrib><creatorcontrib>Thompson, R. Terry</creatorcontrib><creatorcontrib>Gaede, Stewart</creatorcontrib><creatorcontrib>Gelman, Neil</creatorcontrib><title>The Effect of Registration on Voxel-Wise Tofts Model Parameters and Uncertainties from DCE-MRI of Early-Stage Breast Cancer Patients Using 3DSlicer</title><title>Journal of digital imaging</title><addtitle>J Digit Imaging</addtitle><addtitle>J Digit Imaging</addtitle><description>We quantitatively investigate the influence of image registration, using open-source software (3DSlicer), on kinetic analysis (Tofts model) of dynamic contrast enhanced MRI of early-stage breast cancer patients. We also show that registration computation time can be reduced by reducing the percent sampling (PS) of voxels used for estimation of the cost function. DCE-MRI breast images were acquired on a 3T-PET/MRI system in 13 patients with early-stage breast cancer who were scanned in a prone radiotherapy position. Images were registered using a BSpline transformation with a 2 cm isotropic grid at 100, 20, 5, 1, and 0.5PS (BRAINSFit in 3DSlicer). Signal enhancement curves were analyzed voxel-by-voxel using the Tofts kinetic model. Comparing unregistered with registered groups, we found a significant change in the 90th percentile of the voxel-wise distribution of K
trans
. We also found a significant reduction in the following: (1) in the standard error (uncertainty) of the parameter value estimation, (2) the number of voxel fits providing unphysical values for the extracellular-extravascular volume fraction (
v
e
> 1), and (3) goodness of fit. We found no significant differences in the median of parameter value distributions (K
trans
,
v
e
) between unregistered and registered images. Differences between parameters and uncertainties obtained using 100PS versus 20PS were small and statistically insignificant. As such, computation time can be reduced by a factor of 2, on average, by using 20PS while not affecting the kinetic fit. The methods outlined here are important for studies including a large number of post-contrast images or number of patient images.</description><subject>Breast cancer</subject><subject>Computing time</subject><subject>Cost function</subject><subject>Goodness of fit</subject><subject>Image acquisition</subject><subject>Image contrast</subject><subject>Image registration</subject><subject>Imaging</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Parameter estimation</subject><subject>Parameter uncertainty</subject><subject>Positron emission</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Registration</subject><subject>Source code</subject><subject>Standard error</subject><subject>Tomography</subject><issn>0897-1889</issn><issn>1618-727X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1vEzEQhi0EoiHwBzggS1y4GPyxu15fkCANUKkVqE2Am-XdHW9dbexiO1X7O_jDOKSUjwOSpZFm3nk8My9CTxl9ySiVrxKjXLaEckooFbIizT00Yw1rieTy6300o62ShLWtOkCPUrqglMlaVg_RgeCyagWlM_R9dQ54aS30GQeLT2F0KUeTXfC4vM_hGibyxSXAq2BzwidhgAl_MtFsIENM2PgBr30PMRvns4OEbQwbfLhYkpPTox1zaeJ0Q86yGQG_jWBSxguz6yiY0uALdZ2cH7E4PJtcyT9GD6yZEjy5jXO0frdcLT6Q44_vjxZvjklfySoTWTd1p0zPBtlUbccq2_FukAo6UXd0GOzQK2r7kmNKSUYNUC4aUCWCsi0Xc_R6z73cdhsY-jJKNJO-jG5j4o0Oxum_K96d6zFc6XJFrlRVAC9uATF820LKeuNSD9NkPIRt0rwSxZe2Lbeeo-f_SC_CNvqynuZ1w5paqLouKr5X9TGkFMHeDcOo3nmu957r4rn-6bluStOzP9e4a_llchGIvSCVkh8h_v77P9gfddC5Eg</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Mouawad, Matthew</creator><creator>Biernaski, Heather</creator><creator>Brackstone, Muriel</creator><creator>Lock, Michael</creator><creator>Kornecki, Anat</creator><creator>Shmuilovich, Olga</creator><creator>Ben-Nachum, Ilanit</creator><creator>Prato, Frank S.</creator><creator>Thompson, R. Terry</creator><creator>Gaede, Stewart</creator><creator>Gelman, Neil</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201001</creationdate><title>The Effect of Registration on Voxel-Wise Tofts Model Parameters and Uncertainties from DCE-MRI of Early-Stage Breast Cancer Patients Using 3DSlicer</title><author>Mouawad, Matthew ; Biernaski, Heather ; Brackstone, Muriel ; Lock, Michael ; Kornecki, Anat ; Shmuilovich, Olga ; Ben-Nachum, Ilanit ; Prato, Frank S. ; Thompson, R. Terry ; Gaede, Stewart ; Gelman, Neil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-7565b9ac1d7648b14fb2bd79eb35b0ddfdc90fc2bd199710ae0236e9ae0e9f823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Breast cancer</topic><topic>Computing time</topic><topic>Cost function</topic><topic>Goodness of fit</topic><topic>Image acquisition</topic><topic>Image contrast</topic><topic>Image registration</topic><topic>Imaging</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Parameter estimation</topic><topic>Parameter uncertainty</topic><topic>Positron emission</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Registration</topic><topic>Source code</topic><topic>Standard error</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouawad, Matthew</creatorcontrib><creatorcontrib>Biernaski, Heather</creatorcontrib><creatorcontrib>Brackstone, Muriel</creatorcontrib><creatorcontrib>Lock, Michael</creatorcontrib><creatorcontrib>Kornecki, Anat</creatorcontrib><creatorcontrib>Shmuilovich, Olga</creatorcontrib><creatorcontrib>Ben-Nachum, Ilanit</creatorcontrib><creatorcontrib>Prato, Frank S.</creatorcontrib><creatorcontrib>Thompson, R. Terry</creatorcontrib><creatorcontrib>Gaede, Stewart</creatorcontrib><creatorcontrib>Gelman, Neil</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of digital imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouawad, Matthew</au><au>Biernaski, Heather</au><au>Brackstone, Muriel</au><au>Lock, Michael</au><au>Kornecki, Anat</au><au>Shmuilovich, Olga</au><au>Ben-Nachum, Ilanit</au><au>Prato, Frank S.</au><au>Thompson, R. Terry</au><au>Gaede, Stewart</au><au>Gelman, Neil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Registration on Voxel-Wise Tofts Model Parameters and Uncertainties from DCE-MRI of Early-Stage Breast Cancer Patients Using 3DSlicer</atitle><jtitle>Journal of digital imaging</jtitle><stitle>J Digit Imaging</stitle><addtitle>J Digit Imaging</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>33</volume><issue>5</issue><spage>1065</spage><epage>1072</epage><pages>1065-1072</pages><issn>0897-1889</issn><eissn>1618-727X</eissn><abstract>We quantitatively investigate the influence of image registration, using open-source software (3DSlicer), on kinetic analysis (Tofts model) of dynamic contrast enhanced MRI of early-stage breast cancer patients. We also show that registration computation time can be reduced by reducing the percent sampling (PS) of voxels used for estimation of the cost function. DCE-MRI breast images were acquired on a 3T-PET/MRI system in 13 patients with early-stage breast cancer who were scanned in a prone radiotherapy position. Images were registered using a BSpline transformation with a 2 cm isotropic grid at 100, 20, 5, 1, and 0.5PS (BRAINSFit in 3DSlicer). Signal enhancement curves were analyzed voxel-by-voxel using the Tofts kinetic model. Comparing unregistered with registered groups, we found a significant change in the 90th percentile of the voxel-wise distribution of K
trans
. We also found a significant reduction in the following: (1) in the standard error (uncertainty) of the parameter value estimation, (2) the number of voxel fits providing unphysical values for the extracellular-extravascular volume fraction (
v
e
> 1), and (3) goodness of fit. We found no significant differences in the median of parameter value distributions (K
trans
,
v
e
) between unregistered and registered images. Differences between parameters and uncertainties obtained using 100PS versus 20PS were small and statistically insignificant. As such, computation time can be reduced by a factor of 2, on average, by using 20PS while not affecting the kinetic fit. The methods outlined here are important for studies including a large number of post-contrast images or number of patient images.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>32748300</pmid><doi>10.1007/s10278-020-00374-6</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-1889 |
ispartof | Journal of digital imaging, 2020-10, Vol.33 (5), p.1065-1072 |
issn | 0897-1889 1618-727X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7572994 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Breast cancer Computing time Cost function Goodness of fit Image acquisition Image contrast Image registration Imaging Magnetic resonance imaging Mathematical models Medical imaging Medicine Medicine & Public Health Parameter estimation Parameter uncertainty Positron emission Radiation therapy Radiology Registration Source code Standard error Tomography |
title | The Effect of Registration on Voxel-Wise Tofts Model Parameters and Uncertainties from DCE-MRI of Early-Stage Breast Cancer Patients Using 3DSlicer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Registration%20on%20Voxel-Wise%20Tofts%20Model%20Parameters%20and%20Uncertainties%20from%20DCE-MRI%20of%20Early-Stage%20Breast%20Cancer%20Patients%20Using%203DSlicer&rft.jtitle=Journal%20of%20digital%20imaging&rft.au=Mouawad,%20Matthew&rft.date=2020-10-01&rft.volume=33&rft.issue=5&rft.spage=1065&rft.epage=1072&rft.pages=1065-1072&rft.issn=0897-1889&rft.eissn=1618-727X&rft_id=info:doi/10.1007/s10278-020-00374-6&rft_dat=%3Cproquest_pubme%3E2430378848%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2561653955&rft_id=info:pmid/32748300&rfr_iscdi=true |