Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes
The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest...
Gespeichert in:
Veröffentlicht in: | Developmental biology 2020-11, Vol.467 (1-2), p.14-29 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1-2 |
container_start_page | 14 |
container_title | Developmental biology |
container_volume | 467 |
creator | Stundl, Jan Pospisilova, Anna Matějková, Tereza Psenicka, Martin Bronner, Marianne E. Cerny, Robert |
description | The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes.
[Display omitted]
•First comprehensive analysis of cranial neural crest migration in ray-finned fishes.•Unique cranial neural crest migratory patterns among vertebrates.•Heterochronies in neural crest migratory patterns influences craniofacial diversity. |
doi_str_mv | 10.1016/j.ydbio.2020.08.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7572781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160620302281</els_id><sourcerecordid>2437121161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d1ee474438c2e0f8355e5afe0bd91fc763cc6fe837aa000deecf1cdf181369aa3</originalsourceid><addsrcrecordid>eNp9UcFuEzEUtBCIpoEvQEI-ctnl2d71bg4goQooUhEXkLhZjv3cOtrYwfZGyt_XS0oFF07v8Gbmzbwh5BWDlgGTb3ftyW59bDlwaGFsAYYnZMVg0ze97H4-JSsAxhsmQV6Qy5x3ACDGUTwnF4KPopc9XxH91d8mXWI60YMuBVPIVAdL8RinufgY9LKZdC7e-HKi0VGTdPB6ogHnVIdJmAs1OE2Z-kCTPjXOh4CWOp_vML8gz5yeMr58mGvy49PH71fXzc23z1-uPtw0pus3pbEMsRu6ToyGI7jqr8deO4St3TBnBimMkQ5HMWhdg1hE45ixjo1MyI3WYk3en3UP83aP1mAo1Z46JL-vGVTUXv27Cf5O3cajGvqBD1VlTd48CKT4a66h1N7nJZcOGOeseCcGxhmTC1ScoSbFnBO6xzMM1FKO2qnf5ailHAWjquVU1uu_HT5y_rRRAe_OAKx_OnpMKhuPwaD1CU1RNvr_HrgHjUOlmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437121161</pqid></control><display><type>article</type><title>Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stundl, Jan ; Pospisilova, Anna ; Matějková, Tereza ; Psenicka, Martin ; Bronner, Marianne E. ; Cerny, Robert</creator><creatorcontrib>Stundl, Jan ; Pospisilova, Anna ; Matějková, Tereza ; Psenicka, Martin ; Bronner, Marianne E. ; Cerny, Robert</creatorcontrib><description>The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes.
[Display omitted]
•First comprehensive analysis of cranial neural crest migration in ray-finned fishes.•Unique cranial neural crest migratory patterns among vertebrates.•Heterochronies in neural crest migratory patterns influences craniofacial diversity.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2020.08.007</identifier><identifier>PMID: 32835652</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biological Evolution ; Cell Movement - physiology ; Craniofacial ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - embryology ; Evolution ; Fishes - embryology ; Neural crest ; Neural Crest - cytology ; Neural Crest - embryology ; Neurulation ; Vertebrates</subject><ispartof>Developmental biology, 2020-11, Vol.467 (1-2), p.14-29</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d1ee474438c2e0f8355e5afe0bd91fc763cc6fe837aa000deecf1cdf181369aa3</citedby><cites>FETCH-LOGICAL-c459t-d1ee474438c2e0f8355e5afe0bd91fc763cc6fe837aa000deecf1cdf181369aa3</cites><orcidid>0000-0002-3808-7856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ydbio.2020.08.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32835652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stundl, Jan</creatorcontrib><creatorcontrib>Pospisilova, Anna</creatorcontrib><creatorcontrib>Matějková, Tereza</creatorcontrib><creatorcontrib>Psenicka, Martin</creatorcontrib><creatorcontrib>Bronner, Marianne E.</creatorcontrib><creatorcontrib>Cerny, Robert</creatorcontrib><title>Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes.
[Display omitted]
•First comprehensive analysis of cranial neural crest migration in ray-finned fishes.•Unique cranial neural crest migratory patterns among vertebrates.•Heterochronies in neural crest migratory patterns influences craniofacial diversity.</description><subject>Animals</subject><subject>Biological Evolution</subject><subject>Cell Movement - physiology</subject><subject>Craniofacial</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Evolution</subject><subject>Fishes - embryology</subject><subject>Neural crest</subject><subject>Neural Crest - cytology</subject><subject>Neural Crest - embryology</subject><subject>Neurulation</subject><subject>Vertebrates</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFuEzEUtBCIpoEvQEI-ctnl2d71bg4goQooUhEXkLhZjv3cOtrYwfZGyt_XS0oFF07v8Gbmzbwh5BWDlgGTb3ftyW59bDlwaGFsAYYnZMVg0ze97H4-JSsAxhsmQV6Qy5x3ACDGUTwnF4KPopc9XxH91d8mXWI60YMuBVPIVAdL8RinufgY9LKZdC7e-HKi0VGTdPB6ogHnVIdJmAs1OE2Z-kCTPjXOh4CWOp_vML8gz5yeMr58mGvy49PH71fXzc23z1-uPtw0pus3pbEMsRu6ToyGI7jqr8deO4St3TBnBimMkQ5HMWhdg1hE45ixjo1MyI3WYk3en3UP83aP1mAo1Z46JL-vGVTUXv27Cf5O3cajGvqBD1VlTd48CKT4a66h1N7nJZcOGOeseCcGxhmTC1ScoSbFnBO6xzMM1FKO2qnf5ailHAWjquVU1uu_HT5y_rRRAe_OAKx_OnpMKhuPwaD1CU1RNvr_HrgHjUOlmA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Stundl, Jan</creator><creator>Pospisilova, Anna</creator><creator>Matějková, Tereza</creator><creator>Psenicka, Martin</creator><creator>Bronner, Marianne E.</creator><creator>Cerny, Robert</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3808-7856</orcidid></search><sort><creationdate>20201101</creationdate><title>Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes</title><author>Stundl, Jan ; Pospisilova, Anna ; Matějková, Tereza ; Psenicka, Martin ; Bronner, Marianne E. ; Cerny, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d1ee474438c2e0f8355e5afe0bd91fc763cc6fe837aa000deecf1cdf181369aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Evolution</topic><topic>Cell Movement - physiology</topic><topic>Craniofacial</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Evolution</topic><topic>Fishes - embryology</topic><topic>Neural crest</topic><topic>Neural Crest - cytology</topic><topic>Neural Crest - embryology</topic><topic>Neurulation</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stundl, Jan</creatorcontrib><creatorcontrib>Pospisilova, Anna</creatorcontrib><creatorcontrib>Matějková, Tereza</creatorcontrib><creatorcontrib>Psenicka, Martin</creatorcontrib><creatorcontrib>Bronner, Marianne E.</creatorcontrib><creatorcontrib>Cerny, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stundl, Jan</au><au>Pospisilova, Anna</au><au>Matějková, Tereza</au><au>Psenicka, Martin</au><au>Bronner, Marianne E.</au><au>Cerny, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>467</volume><issue>1-2</issue><spage>14</spage><epage>29</epage><pages>14-29</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes.
[Display omitted]
•First comprehensive analysis of cranial neural crest migration in ray-finned fishes.•Unique cranial neural crest migratory patterns among vertebrates.•Heterochronies in neural crest migratory patterns influences craniofacial diversity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32835652</pmid><doi>10.1016/j.ydbio.2020.08.007</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3808-7856</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1606 |
ispartof | Developmental biology, 2020-11, Vol.467 (1-2), p.14-29 |
issn | 0012-1606 1095-564X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7572781 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Biological Evolution Cell Movement - physiology Craniofacial Embryo, Nonmammalian - cytology Embryo, Nonmammalian - embryology Evolution Fishes - embryology Neural crest Neural Crest - cytology Neural Crest - embryology Neurulation Vertebrates |
title | Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Migratory%20patterns%20and%20evolutionary%20plasticity%20of%20cranial%20neural%20crest%20cells%20in%20ray-finned%20fishes&rft.jtitle=Developmental%20biology&rft.au=Stundl,%20Jan&rft.date=2020-11-01&rft.volume=467&rft.issue=1-2&rft.spage=14&rft.epage=29&rft.pages=14-29&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2020.08.007&rft_dat=%3Cproquest_pubme%3E2437121161%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437121161&rft_id=info:pmid/32835652&rft_els_id=S0012160620302281&rfr_iscdi=true |