Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes

The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Developmental biology 2020-11, Vol.467 (1-2), p.14-29
Hauptverfasser: Stundl, Jan, Pospisilova, Anna, Matějková, Tereza, Psenicka, Martin, Bronner, Marianne E., Cerny, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1-2
container_start_page 14
container_title Developmental biology
container_volume 467
creator Stundl, Jan
Pospisilova, Anna
Matějková, Tereza
Psenicka, Martin
Bronner, Marianne E.
Cerny, Robert
description The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes. [Display omitted] •First comprehensive analysis of cranial neural crest migration in ray-finned fishes.•Unique cranial neural crest migratory patterns among vertebrates.•Heterochronies in neural crest migratory patterns influences craniofacial diversity.
doi_str_mv 10.1016/j.ydbio.2020.08.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7572781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012160620302281</els_id><sourcerecordid>2437121161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-d1ee474438c2e0f8355e5afe0bd91fc763cc6fe837aa000deecf1cdf181369aa3</originalsourceid><addsrcrecordid>eNp9UcFuEzEUtBCIpoEvQEI-ctnl2d71bg4goQooUhEXkLhZjv3cOtrYwfZGyt_XS0oFF07v8Gbmzbwh5BWDlgGTb3ftyW59bDlwaGFsAYYnZMVg0ze97H4-JSsAxhsmQV6Qy5x3ACDGUTwnF4KPopc9XxH91d8mXWI60YMuBVPIVAdL8RinufgY9LKZdC7e-HKi0VGTdPB6ogHnVIdJmAs1OE2Z-kCTPjXOh4CWOp_vML8gz5yeMr58mGvy49PH71fXzc23z1-uPtw0pus3pbEMsRu6ToyGI7jqr8deO4St3TBnBimMkQ5HMWhdg1hE45ixjo1MyI3WYk3en3UP83aP1mAo1Z46JL-vGVTUXv27Cf5O3cajGvqBD1VlTd48CKT4a66h1N7nJZcOGOeseCcGxhmTC1ScoSbFnBO6xzMM1FKO2qnf5ailHAWjquVU1uu_HT5y_rRRAe_OAKx_OnpMKhuPwaD1CU1RNvr_HrgHjUOlmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437121161</pqid></control><display><type>article</type><title>Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Stundl, Jan ; Pospisilova, Anna ; Matějková, Tereza ; Psenicka, Martin ; Bronner, Marianne E. ; Cerny, Robert</creator><creatorcontrib>Stundl, Jan ; Pospisilova, Anna ; Matějková, Tereza ; Psenicka, Martin ; Bronner, Marianne E. ; Cerny, Robert</creatorcontrib><description>The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes. [Display omitted] •First comprehensive analysis of cranial neural crest migration in ray-finned fishes.•Unique cranial neural crest migratory patterns among vertebrates.•Heterochronies in neural crest migratory patterns influences craniofacial diversity.</description><identifier>ISSN: 0012-1606</identifier><identifier>EISSN: 1095-564X</identifier><identifier>DOI: 10.1016/j.ydbio.2020.08.007</identifier><identifier>PMID: 32835652</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Biological Evolution ; Cell Movement - physiology ; Craniofacial ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - embryology ; Evolution ; Fishes - embryology ; Neural crest ; Neural Crest - cytology ; Neural Crest - embryology ; Neurulation ; Vertebrates</subject><ispartof>Developmental biology, 2020-11, Vol.467 (1-2), p.14-29</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-d1ee474438c2e0f8355e5afe0bd91fc763cc6fe837aa000deecf1cdf181369aa3</citedby><cites>FETCH-LOGICAL-c459t-d1ee474438c2e0f8355e5afe0bd91fc763cc6fe837aa000deecf1cdf181369aa3</cites><orcidid>0000-0002-3808-7856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ydbio.2020.08.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32835652$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stundl, Jan</creatorcontrib><creatorcontrib>Pospisilova, Anna</creatorcontrib><creatorcontrib>Matějková, Tereza</creatorcontrib><creatorcontrib>Psenicka, Martin</creatorcontrib><creatorcontrib>Bronner, Marianne E.</creatorcontrib><creatorcontrib>Cerny, Robert</creatorcontrib><title>Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes</title><title>Developmental biology</title><addtitle>Dev Biol</addtitle><description>The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes. [Display omitted] •First comprehensive analysis of cranial neural crest migration in ray-finned fishes.•Unique cranial neural crest migratory patterns among vertebrates.•Heterochronies in neural crest migratory patterns influences craniofacial diversity.</description><subject>Animals</subject><subject>Biological Evolution</subject><subject>Cell Movement - physiology</subject><subject>Craniofacial</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Evolution</subject><subject>Fishes - embryology</subject><subject>Neural crest</subject><subject>Neural Crest - cytology</subject><subject>Neural Crest - embryology</subject><subject>Neurulation</subject><subject>Vertebrates</subject><issn>0012-1606</issn><issn>1095-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UcFuEzEUtBCIpoEvQEI-ctnl2d71bg4goQooUhEXkLhZjv3cOtrYwfZGyt_XS0oFF07v8Gbmzbwh5BWDlgGTb3ftyW59bDlwaGFsAYYnZMVg0ze97H4-JSsAxhsmQV6Qy5x3ACDGUTwnF4KPopc9XxH91d8mXWI60YMuBVPIVAdL8RinufgY9LKZdC7e-HKi0VGTdPB6ogHnVIdJmAs1OE2Z-kCTPjXOh4CWOp_vML8gz5yeMr58mGvy49PH71fXzc23z1-uPtw0pus3pbEMsRu6ToyGI7jqr8deO4St3TBnBimMkQ5HMWhdg1hE45ixjo1MyI3WYk3en3UP83aP1mAo1Z46JL-vGVTUXv27Cf5O3cajGvqBD1VlTd48CKT4a66h1N7nJZcOGOeseCcGxhmTC1ScoSbFnBO6xzMM1FKO2qnf5ailHAWjquVU1uu_HT5y_rRRAe_OAKx_OnpMKhuPwaD1CU1RNvr_HrgHjUOlmA</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Stundl, Jan</creator><creator>Pospisilova, Anna</creator><creator>Matějková, Tereza</creator><creator>Psenicka, Martin</creator><creator>Bronner, Marianne E.</creator><creator>Cerny, Robert</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3808-7856</orcidid></search><sort><creationdate>20201101</creationdate><title>Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes</title><author>Stundl, Jan ; Pospisilova, Anna ; Matějková, Tereza ; Psenicka, Martin ; Bronner, Marianne E. ; Cerny, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-d1ee474438c2e0f8355e5afe0bd91fc763cc6fe837aa000deecf1cdf181369aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Biological Evolution</topic><topic>Cell Movement - physiology</topic><topic>Craniofacial</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Evolution</topic><topic>Fishes - embryology</topic><topic>Neural crest</topic><topic>Neural Crest - cytology</topic><topic>Neural Crest - embryology</topic><topic>Neurulation</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stundl, Jan</creatorcontrib><creatorcontrib>Pospisilova, Anna</creatorcontrib><creatorcontrib>Matějková, Tereza</creatorcontrib><creatorcontrib>Psenicka, Martin</creatorcontrib><creatorcontrib>Bronner, Marianne E.</creatorcontrib><creatorcontrib>Cerny, Robert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Developmental biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stundl, Jan</au><au>Pospisilova, Anna</au><au>Matějková, Tereza</au><au>Psenicka, Martin</au><au>Bronner, Marianne E.</au><au>Cerny, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes</atitle><jtitle>Developmental biology</jtitle><addtitle>Dev Biol</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>467</volume><issue>1-2</issue><spage>14</spage><epage>29</epage><pages>14-29</pages><issn>0012-1606</issn><eissn>1095-564X</eissn><abstract>The cranial neural crest (CNC) arises within the developing central nervous system, but then migrates away from the neural tube in three consecutive streams termed mandibular, hyoid and branchial, respectively, according to the order along the anteroposterior axis. While the process of neural crest emigration generally follows a conserved anterior to posterior sequence across vertebrates, we find that ray-finned fishes (bichir, sterlet, gar, and pike) exhibit several heterochronies in the timing and order of CNC emergence that influences their subsequent migratory patterns. First, emigration of the cranial neural crest in these fishes occurs prematurely compared to other vertebrates, already initiating during early neurulation and well before neural tube closure. Second, delamination of the hyoid stream occurs prior to the more anterior mandibular stream; this is associated with early morphogenesis of key hyoid structures like external gills (bichir), a large opercular flap (gar) or first forming cartilage (pike). In sterlet, the hyoid and branchial CNC cells form a single hyobranchial sheet, which later segregates in concert with second pharyngeal pouch morphogenesis. Taken together, the results show that despite generally conserved migratory patterns, heterochronic alterations in the timing of emigration and pattern of migration of CNC cells accompanies morphological diversity of ray-finned fishes. [Display omitted] •First comprehensive analysis of cranial neural crest migration in ray-finned fishes.•Unique cranial neural crest migratory patterns among vertebrates.•Heterochronies in neural crest migratory patterns influences craniofacial diversity.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32835652</pmid><doi>10.1016/j.ydbio.2020.08.007</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-3808-7856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1606
ispartof Developmental biology, 2020-11, Vol.467 (1-2), p.14-29
issn 0012-1606
1095-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7572781
source MEDLINE; Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Animals
Biological Evolution
Cell Movement - physiology
Craniofacial
Embryo, Nonmammalian - cytology
Embryo, Nonmammalian - embryology
Evolution
Fishes - embryology
Neural crest
Neural Crest - cytology
Neural Crest - embryology
Neurulation
Vertebrates
title Migratory patterns and evolutionary plasticity of cranial neural crest cells in ray-finned fishes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A20%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Migratory%20patterns%20and%20evolutionary%20plasticity%20of%20cranial%20neural%20crest%20cells%20in%20ray-finned%20fishes&rft.jtitle=Developmental%20biology&rft.au=Stundl,%20Jan&rft.date=2020-11-01&rft.volume=467&rft.issue=1-2&rft.spage=14&rft.epage=29&rft.pages=14-29&rft.issn=0012-1606&rft.eissn=1095-564X&rft_id=info:doi/10.1016/j.ydbio.2020.08.007&rft_dat=%3Cproquest_pubme%3E2437121161%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437121161&rft_id=info:pmid/32835652&rft_els_id=S0012160620302281&rfr_iscdi=true