Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation
Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion in...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-10, Vol.117 (41), p.25293-25301 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25301 |
---|---|
container_issue | 41 |
container_start_page | 25293 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Debets, Marjoke F. Tastan, Omur Y. Wisnovsky, Simon P. Malaker, Stacy A. Angelis, Nikolaos Moeckl, Leonhard K. R. Choi, Junwon Flynn, Helen Wagner, Lauren J. S. Bineva-Todd, Ganka Antonopoulos, Aristotelis Cioce, Anna Browne, William M. Li, Zhen Briggs, David C. Douglas, Holly L. Hess, Gaelen T. Agbay, Anthony J. Roustan, Chloe Kjaer, Svend Haslam, Stuart M. Snijders, Ambrosius P. Bassik, Michael C. Moerner, W. E. Li, Vivian S. W. Bertozzi, Carolyn R. Schumann, Benjamin |
description | Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe NE-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)–linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine–4-epimerase (GALE) like conventional GalNAc–based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotidesugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan–specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, “bump-and-hole” (BH)–GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation. |
doi_str_mv | 10.1073/pnas.2007297117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7568240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969598</jstor_id><sourcerecordid>26969598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8c00705fab228cb3706e81df721ea28ad7d7159e884da9d791b7662ce31dfdf23</originalsourceid><addsrcrecordid>eNpd0UtvEzEUBWALUdG0sGYFGolNN9P6NX5skFDFSyp0A2vL47kTHBw72E6l_Ps6Sgm0Ky_ud498dRB6TfAlwZJdbaItlxRjSbUkRD5DC4I16QXX-DlaYExlrzjlp-islBXGWA8Kv0CnjGqlCVULNH-DascUvOs2GZwvPsUu2BGCj8sOoh0DlK5AAFf9HTSUxv0kzd1t38xvmLrvvXVQd2Fpg3U1Fbv2Ebpl2LlUdsHWFvkSncw2FHj18J6jn58-_rj-0t_cfv56_eGmd5yz2ivXTsHDbEdKlRuZxAIUmWZJCViq7CQnSQYNSvHJ6klqMkohqAPW0DRTdo7eH3I323ENk4NYsw1mk_3a5p1J1pvHk-h_mWW6M3IQinLcAi4eAnL6s4VSzdoXByHYCGlbDOVcMkKU4I2-e0JXaZtjO6-pgVGsOBZNXR2Uy6mUDPPxMwSbfYdm36H512HbePv_DUf_t7QG3hzAqtSUj3MqtNCDVuwelSqkVw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2453208406</pqid></control><display><type>article</type><title>Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Debets, Marjoke F. ; Tastan, Omur Y. ; Wisnovsky, Simon P. ; Malaker, Stacy A. ; Angelis, Nikolaos ; Moeckl, Leonhard K. R. ; Choi, Junwon ; Flynn, Helen ; Wagner, Lauren J. S. ; Bineva-Todd, Ganka ; Antonopoulos, Aristotelis ; Cioce, Anna ; Browne, William M. ; Li, Zhen ; Briggs, David C. ; Douglas, Holly L. ; Hess, Gaelen T. ; Agbay, Anthony J. ; Roustan, Chloe ; Kjaer, Svend ; Haslam, Stuart M. ; Snijders, Ambrosius P. ; Bassik, Michael C. ; Moerner, W. E. ; Li, Vivian S. W. ; Bertozzi, Carolyn R. ; Schumann, Benjamin</creator><creatorcontrib>Debets, Marjoke F. ; Tastan, Omur Y. ; Wisnovsky, Simon P. ; Malaker, Stacy A. ; Angelis, Nikolaos ; Moeckl, Leonhard K. R. ; Choi, Junwon ; Flynn, Helen ; Wagner, Lauren J. S. ; Bineva-Todd, Ganka ; Antonopoulos, Aristotelis ; Cioce, Anna ; Browne, William M. ; Li, Zhen ; Briggs, David C. ; Douglas, Holly L. ; Hess, Gaelen T. ; Agbay, Anthony J. ; Roustan, Chloe ; Kjaer, Svend ; Haslam, Stuart M. ; Snijders, Ambrosius P. ; Bassik, Michael C. ; Moerner, W. E. ; Li, Vivian S. W. ; Bertozzi, Carolyn R. ; Schumann, Benjamin</creatorcontrib><description>Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe NE-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)–linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine–4-epimerase (GALE) like conventional GalNAc–based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotidesugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan–specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, “bump-and-hole” (BH)–GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2007297117</identifier><identifier>PMID: 32989128</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetylgalactosamine - chemistry ; Acetylgalactosamine - metabolism ; Biological Sciences ; Cancer ; Cell surface ; Chain branching ; CRISPR ; DNA probes ; Ectopic expression ; Epimerase ; Gene Expression Regulation, Enzymologic ; Genomes ; Glycan ; Glycoproteins - metabolism ; Glycosylation ; Glycosyltransferase ; Humans ; Intestine ; Labeling ; Metabolism ; Monosaccharides ; N-Acetylgalactosamine ; N-Acetylglucosamine ; Nucleotides ; Organoids ; Physical Sciences ; Polysaccharides ; Proteins ; Racemases and Epimerases - genetics ; Racemases and Epimerases - metabolism ; Substrate Specificity ; Tumorigenesis ; Uridine ; Uridine Diphosphate N-Acetylgalactosamine - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (41), p.25293-25301</ispartof><rights>Copyright © 2020 the Author(s). Published by PNAS.</rights><rights>Copyright National Academy of Sciences Oct 13, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8c00705fab228cb3706e81df721ea28ad7d7159e884da9d791b7662ce31dfdf23</citedby><cites>FETCH-LOGICAL-c443t-8c00705fab228cb3706e81df721ea28ad7d7159e884da9d791b7662ce31dfdf23</cites><orcidid>0000-0001-7002-9130 ; 0000-0001-8926-9417 ; 0000-0003-2382-5067 ; 0000-0003-0466-5977 ; 0000-0002-8532-7496 ; 0000-0002-2669-8852 ; 0000-0003-2604-766X ; 0000-0002-5149-7665 ; 0000-0002-5176-0072 ; 0000-0003-2647-3714 ; 0000-0003-4482-2754 ; 0000-0001-5504-0147 ; 0000-0002-2830-209X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969598$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969598$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32989128$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Debets, Marjoke F.</creatorcontrib><creatorcontrib>Tastan, Omur Y.</creatorcontrib><creatorcontrib>Wisnovsky, Simon P.</creatorcontrib><creatorcontrib>Malaker, Stacy A.</creatorcontrib><creatorcontrib>Angelis, Nikolaos</creatorcontrib><creatorcontrib>Moeckl, Leonhard K. R.</creatorcontrib><creatorcontrib>Choi, Junwon</creatorcontrib><creatorcontrib>Flynn, Helen</creatorcontrib><creatorcontrib>Wagner, Lauren J. S.</creatorcontrib><creatorcontrib>Bineva-Todd, Ganka</creatorcontrib><creatorcontrib>Antonopoulos, Aristotelis</creatorcontrib><creatorcontrib>Cioce, Anna</creatorcontrib><creatorcontrib>Browne, William M.</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Briggs, David C.</creatorcontrib><creatorcontrib>Douglas, Holly L.</creatorcontrib><creatorcontrib>Hess, Gaelen T.</creatorcontrib><creatorcontrib>Agbay, Anthony J.</creatorcontrib><creatorcontrib>Roustan, Chloe</creatorcontrib><creatorcontrib>Kjaer, Svend</creatorcontrib><creatorcontrib>Haslam, Stuart M.</creatorcontrib><creatorcontrib>Snijders, Ambrosius P.</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><creatorcontrib>Moerner, W. E.</creatorcontrib><creatorcontrib>Li, Vivian S. W.</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R.</creatorcontrib><creatorcontrib>Schumann, Benjamin</creatorcontrib><title>Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe NE-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)–linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine–4-epimerase (GALE) like conventional GalNAc–based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotidesugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan–specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, “bump-and-hole” (BH)–GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.</description><subject>Acetylgalactosamine - chemistry</subject><subject>Acetylgalactosamine - metabolism</subject><subject>Biological Sciences</subject><subject>Cancer</subject><subject>Cell surface</subject><subject>Chain branching</subject><subject>CRISPR</subject><subject>DNA probes</subject><subject>Ectopic expression</subject><subject>Epimerase</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Genomes</subject><subject>Glycan</subject><subject>Glycoproteins - metabolism</subject><subject>Glycosylation</subject><subject>Glycosyltransferase</subject><subject>Humans</subject><subject>Intestine</subject><subject>Labeling</subject><subject>Metabolism</subject><subject>Monosaccharides</subject><subject>N-Acetylgalactosamine</subject><subject>N-Acetylglucosamine</subject><subject>Nucleotides</subject><subject>Organoids</subject><subject>Physical Sciences</subject><subject>Polysaccharides</subject><subject>Proteins</subject><subject>Racemases and Epimerases - genetics</subject><subject>Racemases and Epimerases - metabolism</subject><subject>Substrate Specificity</subject><subject>Tumorigenesis</subject><subject>Uridine</subject><subject>Uridine Diphosphate N-Acetylgalactosamine - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0UtvEzEUBWALUdG0sGYFGolNN9P6NX5skFDFSyp0A2vL47kTHBw72E6l_Ps6Sgm0Ky_ud498dRB6TfAlwZJdbaItlxRjSbUkRD5DC4I16QXX-DlaYExlrzjlp-islBXGWA8Kv0CnjGqlCVULNH-DascUvOs2GZwvPsUu2BGCj8sOoh0DlK5AAFf9HTSUxv0kzd1t38xvmLrvvXVQd2Fpg3U1Fbv2Ebpl2LlUdsHWFvkSncw2FHj18J6jn58-_rj-0t_cfv56_eGmd5yz2ivXTsHDbEdKlRuZxAIUmWZJCViq7CQnSQYNSvHJ6klqMkohqAPW0DRTdo7eH3I323ENk4NYsw1mk_3a5p1J1pvHk-h_mWW6M3IQinLcAi4eAnL6s4VSzdoXByHYCGlbDOVcMkKU4I2-e0JXaZtjO6-pgVGsOBZNXR2Uy6mUDPPxMwSbfYdm36H512HbePv_DUf_t7QG3hzAqtSUj3MqtNCDVuwelSqkVw</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Debets, Marjoke F.</creator><creator>Tastan, Omur Y.</creator><creator>Wisnovsky, Simon P.</creator><creator>Malaker, Stacy A.</creator><creator>Angelis, Nikolaos</creator><creator>Moeckl, Leonhard K. R.</creator><creator>Choi, Junwon</creator><creator>Flynn, Helen</creator><creator>Wagner, Lauren J. S.</creator><creator>Bineva-Todd, Ganka</creator><creator>Antonopoulos, Aristotelis</creator><creator>Cioce, Anna</creator><creator>Browne, William M.</creator><creator>Li, Zhen</creator><creator>Briggs, David C.</creator><creator>Douglas, Holly L.</creator><creator>Hess, Gaelen T.</creator><creator>Agbay, Anthony J.</creator><creator>Roustan, Chloe</creator><creator>Kjaer, Svend</creator><creator>Haslam, Stuart M.</creator><creator>Snijders, Ambrosius P.</creator><creator>Bassik, Michael C.</creator><creator>Moerner, W. E.</creator><creator>Li, Vivian S. W.</creator><creator>Bertozzi, Carolyn R.</creator><creator>Schumann, Benjamin</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7002-9130</orcidid><orcidid>https://orcid.org/0000-0001-8926-9417</orcidid><orcidid>https://orcid.org/0000-0003-2382-5067</orcidid><orcidid>https://orcid.org/0000-0003-0466-5977</orcidid><orcidid>https://orcid.org/0000-0002-8532-7496</orcidid><orcidid>https://orcid.org/0000-0002-2669-8852</orcidid><orcidid>https://orcid.org/0000-0003-2604-766X</orcidid><orcidid>https://orcid.org/0000-0002-5149-7665</orcidid><orcidid>https://orcid.org/0000-0002-5176-0072</orcidid><orcidid>https://orcid.org/0000-0003-2647-3714</orcidid><orcidid>https://orcid.org/0000-0003-4482-2754</orcidid><orcidid>https://orcid.org/0000-0001-5504-0147</orcidid><orcidid>https://orcid.org/0000-0002-2830-209X</orcidid></search><sort><creationdate>20201013</creationdate><title>Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation</title><author>Debets, Marjoke F. ; Tastan, Omur Y. ; Wisnovsky, Simon P. ; Malaker, Stacy A. ; Angelis, Nikolaos ; Moeckl, Leonhard K. R. ; Choi, Junwon ; Flynn, Helen ; Wagner, Lauren J. S. ; Bineva-Todd, Ganka ; Antonopoulos, Aristotelis ; Cioce, Anna ; Browne, William M. ; Li, Zhen ; Briggs, David C. ; Douglas, Holly L. ; Hess, Gaelen T. ; Agbay, Anthony J. ; Roustan, Chloe ; Kjaer, Svend ; Haslam, Stuart M. ; Snijders, Ambrosius P. ; Bassik, Michael C. ; Moerner, W. E. ; Li, Vivian S. W. ; Bertozzi, Carolyn R. ; Schumann, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8c00705fab228cb3706e81df721ea28ad7d7159e884da9d791b7662ce31dfdf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acetylgalactosamine - chemistry</topic><topic>Acetylgalactosamine - metabolism</topic><topic>Biological Sciences</topic><topic>Cancer</topic><topic>Cell surface</topic><topic>Chain branching</topic><topic>CRISPR</topic><topic>DNA probes</topic><topic>Ectopic expression</topic><topic>Epimerase</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Genomes</topic><topic>Glycan</topic><topic>Glycoproteins - metabolism</topic><topic>Glycosylation</topic><topic>Glycosyltransferase</topic><topic>Humans</topic><topic>Intestine</topic><topic>Labeling</topic><topic>Metabolism</topic><topic>Monosaccharides</topic><topic>N-Acetylgalactosamine</topic><topic>N-Acetylglucosamine</topic><topic>Nucleotides</topic><topic>Organoids</topic><topic>Physical Sciences</topic><topic>Polysaccharides</topic><topic>Proteins</topic><topic>Racemases and Epimerases - genetics</topic><topic>Racemases and Epimerases - metabolism</topic><topic>Substrate Specificity</topic><topic>Tumorigenesis</topic><topic>Uridine</topic><topic>Uridine Diphosphate N-Acetylgalactosamine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debets, Marjoke F.</creatorcontrib><creatorcontrib>Tastan, Omur Y.</creatorcontrib><creatorcontrib>Wisnovsky, Simon P.</creatorcontrib><creatorcontrib>Malaker, Stacy A.</creatorcontrib><creatorcontrib>Angelis, Nikolaos</creatorcontrib><creatorcontrib>Moeckl, Leonhard K. R.</creatorcontrib><creatorcontrib>Choi, Junwon</creatorcontrib><creatorcontrib>Flynn, Helen</creatorcontrib><creatorcontrib>Wagner, Lauren J. S.</creatorcontrib><creatorcontrib>Bineva-Todd, Ganka</creatorcontrib><creatorcontrib>Antonopoulos, Aristotelis</creatorcontrib><creatorcontrib>Cioce, Anna</creatorcontrib><creatorcontrib>Browne, William M.</creatorcontrib><creatorcontrib>Li, Zhen</creatorcontrib><creatorcontrib>Briggs, David C.</creatorcontrib><creatorcontrib>Douglas, Holly L.</creatorcontrib><creatorcontrib>Hess, Gaelen T.</creatorcontrib><creatorcontrib>Agbay, Anthony J.</creatorcontrib><creatorcontrib>Roustan, Chloe</creatorcontrib><creatorcontrib>Kjaer, Svend</creatorcontrib><creatorcontrib>Haslam, Stuart M.</creatorcontrib><creatorcontrib>Snijders, Ambrosius P.</creatorcontrib><creatorcontrib>Bassik, Michael C.</creatorcontrib><creatorcontrib>Moerner, W. E.</creatorcontrib><creatorcontrib>Li, Vivian S. W.</creatorcontrib><creatorcontrib>Bertozzi, Carolyn R.</creatorcontrib><creatorcontrib>Schumann, Benjamin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debets, Marjoke F.</au><au>Tastan, Omur Y.</au><au>Wisnovsky, Simon P.</au><au>Malaker, Stacy A.</au><au>Angelis, Nikolaos</au><au>Moeckl, Leonhard K. R.</au><au>Choi, Junwon</au><au>Flynn, Helen</au><au>Wagner, Lauren J. S.</au><au>Bineva-Todd, Ganka</au><au>Antonopoulos, Aristotelis</au><au>Cioce, Anna</au><au>Browne, William M.</au><au>Li, Zhen</au><au>Briggs, David C.</au><au>Douglas, Holly L.</au><au>Hess, Gaelen T.</au><au>Agbay, Anthony J.</au><au>Roustan, Chloe</au><au>Kjaer, Svend</au><au>Haslam, Stuart M.</au><au>Snijders, Ambrosius P.</au><au>Bassik, Michael C.</au><au>Moerner, W. E.</au><au>Li, Vivian S. W.</au><au>Bertozzi, Carolyn R.</au><au>Schumann, Benjamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>117</volume><issue>41</issue><spage>25293</spage><epage>25301</epage><pages>25293-25301</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe NE-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)–linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine–4-epimerase (GALE) like conventional GalNAc–based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotidesugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan–specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, “bump-and-hole” (BH)–GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32989128</pmid><doi>10.1073/pnas.2007297117</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7002-9130</orcidid><orcidid>https://orcid.org/0000-0001-8926-9417</orcidid><orcidid>https://orcid.org/0000-0003-2382-5067</orcidid><orcidid>https://orcid.org/0000-0003-0466-5977</orcidid><orcidid>https://orcid.org/0000-0002-8532-7496</orcidid><orcidid>https://orcid.org/0000-0002-2669-8852</orcidid><orcidid>https://orcid.org/0000-0003-2604-766X</orcidid><orcidid>https://orcid.org/0000-0002-5149-7665</orcidid><orcidid>https://orcid.org/0000-0002-5176-0072</orcidid><orcidid>https://orcid.org/0000-0003-2647-3714</orcidid><orcidid>https://orcid.org/0000-0003-4482-2754</orcidid><orcidid>https://orcid.org/0000-0001-5504-0147</orcidid><orcidid>https://orcid.org/0000-0002-2830-209X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-10, Vol.117 (41), p.25293-25301 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7568240 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acetylgalactosamine - chemistry Acetylgalactosamine - metabolism Biological Sciences Cancer Cell surface Chain branching CRISPR DNA probes Ectopic expression Epimerase Gene Expression Regulation, Enzymologic Genomes Glycan Glycoproteins - metabolism Glycosylation Glycosyltransferase Humans Intestine Labeling Metabolism Monosaccharides N-Acetylgalactosamine N-Acetylglucosamine Nucleotides Organoids Physical Sciences Polysaccharides Proteins Racemases and Epimerases - genetics Racemases and Epimerases - metabolism Substrate Specificity Tumorigenesis Uridine Uridine Diphosphate N-Acetylgalactosamine - chemistry |
title | Metabolic precision labeling enables selective probing of O-linked N-acetylgalactosamine glycosylation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A01%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20precision%20labeling%20enables%20selective%20probing%20of%20O-linked%20N-acetylgalactosamine%20glycosylation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Debets,%20Marjoke%20F.&rft.date=2020-10-13&rft.volume=117&rft.issue=41&rft.spage=25293&rft.epage=25301&rft.pages=25293-25301&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2007297117&rft_dat=%3Cjstor_pubme%3E26969598%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2453208406&rft_id=info:pmid/32989128&rft_jstor_id=26969598&rfr_iscdi=true |