Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection
Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutat...
Gespeichert in:
Veröffentlicht in: | Stem cell reports 2020-10, Vol.15 (4), p.999-1013 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1013 |
---|---|
container_issue | 4 |
container_start_page | 999 |
container_title | Stem cell reports |
container_volume | 15 |
creator | Sumer, Simon Alexander Hoffmann, Sandra Laue, Svenja Campbell, Birgit Raedecke, Kristin Frajs, Viktoria Clauss, Sebastian Kääb, Stefan Janssen, Johannes W.G. Jauch, Anna Laugwitz, Karl-Ludwig Dorn, Tatjana Moretti, Alessandra Rappold, Gudrun A. |
description | Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro.
[Display omitted]
•Model for atrial fibrillation using patient-specific and gene-corrected hiPSCs•Scarless gene correction of hiPSCs derived from patients with heterozygous mutations•Isolation of rare isogenic clones via sib selection and allele quantification•Strategy for difficult-to-target regions with low editing efficiency
In this study, Sumer, Hoffmann, et al., developed a strategy for the isolation of extremely rare hiPSC clones, suitable for scarless correction of heterozygous mutations by random enrichment of precisely edited cells and their detection via allele quantification. This strategy facilitates hiPSC-based gene correction regardless of the gene-editing approach. |
doi_str_mv | 10.1016/j.stemcr.2020.08.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7562944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213671120303465</els_id><sourcerecordid>2446670444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-fcc6a1f9850bcded28c06a14550c03cec039a1f674ad9a35c593aa7b6c9f520f3</originalsourceid><addsrcrecordid>eNp9kd1u0zAUxyMEYtPYGyB0LrlpsB3HaW6QprKtkzatUkHiznKck_ZUSTxst9N4Ch4Zdx1j3OAL-8j_8_3Lsvec5Zxx9WmTh4iD9blgguVsmjNevsqOheDFRFWcv35hH2WnIWxYOnXNheRvs6NC1JWqlDrOfi08WgoIM-eTFcmN4DqYY0Tvfj6s3DbAcn77XcDNNpq9HIBGWNNiOQvwBT3tsIXOuwEWScYxBrinuIaz6Mn0cEGNp75_jIQdGbjE0Q0I5y1FGldgxhaW1MAS-0P1d9mbzvQBT5_ek-zbxfnX2XxyfXt5NTu7nlipijjprFWGd_W0ZI1tsRVTy9KHLEtmWWExXXXSVSVNW5uitGVdGFM1ytZdKVhXnGSfD3nvts2ArU2de9PrO0-D8Q_aGdL_KiOt9crtdFUqUUuZEnx8SuDdjy2GqAcKFtOsI6ataSGlUhWTj67y4Gq9C8Fj91yGM73nqTf6wFPveWo21YlnCvvwssXnoD_0_s6AaVE7Qq-DTQgstrRnqVtH_6_wG6Eotr8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446670444</pqid></control><display><type>article</type><title>Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sumer, Simon Alexander ; Hoffmann, Sandra ; Laue, Svenja ; Campbell, Birgit ; Raedecke, Kristin ; Frajs, Viktoria ; Clauss, Sebastian ; Kääb, Stefan ; Janssen, Johannes W.G. ; Jauch, Anna ; Laugwitz, Karl-Ludwig ; Dorn, Tatjana ; Moretti, Alessandra ; Rappold, Gudrun A.</creator><creatorcontrib>Sumer, Simon Alexander ; Hoffmann, Sandra ; Laue, Svenja ; Campbell, Birgit ; Raedecke, Kristin ; Frajs, Viktoria ; Clauss, Sebastian ; Kääb, Stefan ; Janssen, Johannes W.G. ; Jauch, Anna ; Laugwitz, Karl-Ludwig ; Dorn, Tatjana ; Moretti, Alessandra ; Rappold, Gudrun A.</creatorcontrib><description>Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro.
[Display omitted]
•Model for atrial fibrillation using patient-specific and gene-corrected hiPSCs•Scarless gene correction of hiPSCs derived from patients with heterozygous mutations•Isolation of rare isogenic clones via sib selection and allele quantification•Strategy for difficult-to-target regions with low editing efficiency
In this study, Sumer, Hoffmann, et al., developed a strategy for the isolation of extremely rare hiPSC clones, suitable for scarless correction of heterozygous mutations by random enrichment of precisely edited cells and their detection via allele quantification. This strategy facilitates hiPSC-based gene correction regardless of the gene-editing approach.</description><identifier>ISSN: 2213-6711</identifier><identifier>EISSN: 2213-6711</identifier><identifier>DOI: 10.1016/j.stemcr.2020.08.015</identifier><identifier>PMID: 32976766</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; atrial fibrillation ; Atrial Fibrillation - genetics ; Base Sequence ; Clone Cells ; Gene Editing ; Heterozygote ; High-Throughput Nucleotide Sequencing ; Homeodomain Proteins - genetics ; Humans ; Induced Pluripotent Stem Cells - pathology ; isogenic control ; Mutation - genetics ; patient-derived iPSCs ; precise gene editing ; Recombinational DNA Repair ; Resource ; RNA, Guide, CRISPR-Cas Systems ; SHOX2 ; sib selection ; Single-Cell Analysis ; Stochastic Processes</subject><ispartof>Stem cell reports, 2020-10, Vol.15 (4), p.999-1013</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-fcc6a1f9850bcded28c06a14550c03cec039a1f674ad9a35c593aa7b6c9f520f3</citedby><cites>FETCH-LOGICAL-c463t-fcc6a1f9850bcded28c06a14550c03cec039a1f674ad9a35c593aa7b6c9f520f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562944/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562944/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32976766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sumer, Simon Alexander</creatorcontrib><creatorcontrib>Hoffmann, Sandra</creatorcontrib><creatorcontrib>Laue, Svenja</creatorcontrib><creatorcontrib>Campbell, Birgit</creatorcontrib><creatorcontrib>Raedecke, Kristin</creatorcontrib><creatorcontrib>Frajs, Viktoria</creatorcontrib><creatorcontrib>Clauss, Sebastian</creatorcontrib><creatorcontrib>Kääb, Stefan</creatorcontrib><creatorcontrib>Janssen, Johannes W.G.</creatorcontrib><creatorcontrib>Jauch, Anna</creatorcontrib><creatorcontrib>Laugwitz, Karl-Ludwig</creatorcontrib><creatorcontrib>Dorn, Tatjana</creatorcontrib><creatorcontrib>Moretti, Alessandra</creatorcontrib><creatorcontrib>Rappold, Gudrun A.</creatorcontrib><title>Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection</title><title>Stem cell reports</title><addtitle>Stem Cell Reports</addtitle><description>Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro.
[Display omitted]
•Model for atrial fibrillation using patient-specific and gene-corrected hiPSCs•Scarless gene correction of hiPSCs derived from patients with heterozygous mutations•Isolation of rare isogenic clones via sib selection and allele quantification•Strategy for difficult-to-target regions with low editing efficiency
In this study, Sumer, Hoffmann, et al., developed a strategy for the isolation of extremely rare hiPSC clones, suitable for scarless correction of heterozygous mutations by random enrichment of precisely edited cells and their detection via allele quantification. This strategy facilitates hiPSC-based gene correction regardless of the gene-editing approach.</description><subject>Alleles</subject><subject>atrial fibrillation</subject><subject>Atrial Fibrillation - genetics</subject><subject>Base Sequence</subject><subject>Clone Cells</subject><subject>Gene Editing</subject><subject>Heterozygote</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Homeodomain Proteins - genetics</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>isogenic control</subject><subject>Mutation - genetics</subject><subject>patient-derived iPSCs</subject><subject>precise gene editing</subject><subject>Recombinational DNA Repair</subject><subject>Resource</subject><subject>RNA, Guide, CRISPR-Cas Systems</subject><subject>SHOX2</subject><subject>sib selection</subject><subject>Single-Cell Analysis</subject><subject>Stochastic Processes</subject><issn>2213-6711</issn><issn>2213-6711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd1u0zAUxyMEYtPYGyB0LrlpsB3HaW6QprKtkzatUkHiznKck_ZUSTxst9N4Ch4Zdx1j3OAL-8j_8_3Lsvec5Zxx9WmTh4iD9blgguVsmjNevsqOheDFRFWcv35hH2WnIWxYOnXNheRvs6NC1JWqlDrOfi08WgoIM-eTFcmN4DqYY0Tvfj6s3DbAcn77XcDNNpq9HIBGWNNiOQvwBT3tsIXOuwEWScYxBrinuIaz6Mn0cEGNp75_jIQdGbjE0Q0I5y1FGldgxhaW1MAS-0P1d9mbzvQBT5_ek-zbxfnX2XxyfXt5NTu7nlipijjprFWGd_W0ZI1tsRVTy9KHLEtmWWExXXXSVSVNW5uitGVdGFM1ytZdKVhXnGSfD3nvts2ArU2de9PrO0-D8Q_aGdL_KiOt9crtdFUqUUuZEnx8SuDdjy2GqAcKFtOsI6ataSGlUhWTj67y4Gq9C8Fj91yGM73nqTf6wFPveWo21YlnCvvwssXnoD_0_s6AaVE7Qq-DTQgstrRnqVtH_6_wG6Eotr8</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Sumer, Simon Alexander</creator><creator>Hoffmann, Sandra</creator><creator>Laue, Svenja</creator><creator>Campbell, Birgit</creator><creator>Raedecke, Kristin</creator><creator>Frajs, Viktoria</creator><creator>Clauss, Sebastian</creator><creator>Kääb, Stefan</creator><creator>Janssen, Johannes W.G.</creator><creator>Jauch, Anna</creator><creator>Laugwitz, Karl-Ludwig</creator><creator>Dorn, Tatjana</creator><creator>Moretti, Alessandra</creator><creator>Rappold, Gudrun A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201013</creationdate><title>Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection</title><author>Sumer, Simon Alexander ; Hoffmann, Sandra ; Laue, Svenja ; Campbell, Birgit ; Raedecke, Kristin ; Frajs, Viktoria ; Clauss, Sebastian ; Kääb, Stefan ; Janssen, Johannes W.G. ; Jauch, Anna ; Laugwitz, Karl-Ludwig ; Dorn, Tatjana ; Moretti, Alessandra ; Rappold, Gudrun A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-fcc6a1f9850bcded28c06a14550c03cec039a1f674ad9a35c593aa7b6c9f520f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>atrial fibrillation</topic><topic>Atrial Fibrillation - genetics</topic><topic>Base Sequence</topic><topic>Clone Cells</topic><topic>Gene Editing</topic><topic>Heterozygote</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Homeodomain Proteins - genetics</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>isogenic control</topic><topic>Mutation - genetics</topic><topic>patient-derived iPSCs</topic><topic>precise gene editing</topic><topic>Recombinational DNA Repair</topic><topic>Resource</topic><topic>RNA, Guide, CRISPR-Cas Systems</topic><topic>SHOX2</topic><topic>sib selection</topic><topic>Single-Cell Analysis</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumer, Simon Alexander</creatorcontrib><creatorcontrib>Hoffmann, Sandra</creatorcontrib><creatorcontrib>Laue, Svenja</creatorcontrib><creatorcontrib>Campbell, Birgit</creatorcontrib><creatorcontrib>Raedecke, Kristin</creatorcontrib><creatorcontrib>Frajs, Viktoria</creatorcontrib><creatorcontrib>Clauss, Sebastian</creatorcontrib><creatorcontrib>Kääb, Stefan</creatorcontrib><creatorcontrib>Janssen, Johannes W.G.</creatorcontrib><creatorcontrib>Jauch, Anna</creatorcontrib><creatorcontrib>Laugwitz, Karl-Ludwig</creatorcontrib><creatorcontrib>Dorn, Tatjana</creatorcontrib><creatorcontrib>Moretti, Alessandra</creatorcontrib><creatorcontrib>Rappold, Gudrun A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumer, Simon Alexander</au><au>Hoffmann, Sandra</au><au>Laue, Svenja</au><au>Campbell, Birgit</au><au>Raedecke, Kristin</au><au>Frajs, Viktoria</au><au>Clauss, Sebastian</au><au>Kääb, Stefan</au><au>Janssen, Johannes W.G.</au><au>Jauch, Anna</au><au>Laugwitz, Karl-Ludwig</au><au>Dorn, Tatjana</au><au>Moretti, Alessandra</au><au>Rappold, Gudrun A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection</atitle><jtitle>Stem cell reports</jtitle><addtitle>Stem Cell Reports</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>15</volume><issue>4</issue><spage>999</spage><epage>1013</epage><pages>999-1013</pages><issn>2213-6711</issn><eissn>2213-6711</eissn><abstract>Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro.
[Display omitted]
•Model for atrial fibrillation using patient-specific and gene-corrected hiPSCs•Scarless gene correction of hiPSCs derived from patients with heterozygous mutations•Isolation of rare isogenic clones via sib selection and allele quantification•Strategy for difficult-to-target regions with low editing efficiency
In this study, Sumer, Hoffmann, et al., developed a strategy for the isolation of extremely rare hiPSC clones, suitable for scarless correction of heterozygous mutations by random enrichment of precisely edited cells and their detection via allele quantification. This strategy facilitates hiPSC-based gene correction regardless of the gene-editing approach.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32976766</pmid><doi>10.1016/j.stemcr.2020.08.015</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2213-6711 |
ispartof | Stem cell reports, 2020-10, Vol.15 (4), p.999-1013 |
issn | 2213-6711 2213-6711 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7562944 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Alleles atrial fibrillation Atrial Fibrillation - genetics Base Sequence Clone Cells Gene Editing Heterozygote High-Throughput Nucleotide Sequencing Homeodomain Proteins - genetics Humans Induced Pluripotent Stem Cells - pathology isogenic control Mutation - genetics patient-derived iPSCs precise gene editing Recombinational DNA Repair Resource RNA, Guide, CRISPR-Cas Systems SHOX2 sib selection Single-Cell Analysis Stochastic Processes |
title | Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Correction%20of%20Heterozygous%20SHOX2%20Mutations%20in%20hiPSCs%20Derived%20from%20Patients%20with%20Atrial%20Fibrillation%20via%20Genome%20Editing%20and%20Sib%20Selection&rft.jtitle=Stem%20cell%20reports&rft.au=Sumer,%20Simon%20Alexander&rft.date=2020-10-13&rft.volume=15&rft.issue=4&rft.spage=999&rft.epage=1013&rft.pages=999-1013&rft.issn=2213-6711&rft.eissn=2213-6711&rft_id=info:doi/10.1016/j.stemcr.2020.08.015&rft_dat=%3Cproquest_pubme%3E2446670444%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446670444&rft_id=info:pmid/32976766&rft_els_id=S2213671120303465&rfr_iscdi=true |