Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection

Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cell reports 2020-10, Vol.15 (4), p.999-1013
Hauptverfasser: Sumer, Simon Alexander, Hoffmann, Sandra, Laue, Svenja, Campbell, Birgit, Raedecke, Kristin, Frajs, Viktoria, Clauss, Sebastian, Kääb, Stefan, Janssen, Johannes W.G., Jauch, Anna, Laugwitz, Karl-Ludwig, Dorn, Tatjana, Moretti, Alessandra, Rappold, Gudrun A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1013
container_issue 4
container_start_page 999
container_title Stem cell reports
container_volume 15
creator Sumer, Simon Alexander
Hoffmann, Sandra
Laue, Svenja
Campbell, Birgit
Raedecke, Kristin
Frajs, Viktoria
Clauss, Sebastian
Kääb, Stefan
Janssen, Johannes W.G.
Jauch, Anna
Laugwitz, Karl-Ludwig
Dorn, Tatjana
Moretti, Alessandra
Rappold, Gudrun A.
description Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro. [Display omitted] •Model for atrial fibrillation using patient-specific and gene-corrected hiPSCs•Scarless gene correction of hiPSCs derived from patients with heterozygous mutations•Isolation of rare isogenic clones via sib selection and allele quantification•Strategy for difficult-to-target regions with low editing efficiency In this study, Sumer, Hoffmann, et al., developed a strategy for the isolation of extremely rare hiPSC clones, suitable for scarless correction of heterozygous mutations by random enrichment of precisely edited cells and their detection via allele quantification. This strategy facilitates hiPSC-based gene correction regardless of the gene-editing approach.
doi_str_mv 10.1016/j.stemcr.2020.08.015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7562944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213671120303465</els_id><sourcerecordid>2446670444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-fcc6a1f9850bcded28c06a14550c03cec039a1f674ad9a35c593aa7b6c9f520f3</originalsourceid><addsrcrecordid>eNp9kd1u0zAUxyMEYtPYGyB0LrlpsB3HaW6QprKtkzatUkHiznKck_ZUSTxst9N4Ch4Zdx1j3OAL-8j_8_3Lsvec5Zxx9WmTh4iD9blgguVsmjNevsqOheDFRFWcv35hH2WnIWxYOnXNheRvs6NC1JWqlDrOfi08WgoIM-eTFcmN4DqYY0Tvfj6s3DbAcn77XcDNNpq9HIBGWNNiOQvwBT3tsIXOuwEWScYxBrinuIaz6Mn0cEGNp75_jIQdGbjE0Q0I5y1FGldgxhaW1MAS-0P1d9mbzvQBT5_ek-zbxfnX2XxyfXt5NTu7nlipijjprFWGd_W0ZI1tsRVTy9KHLEtmWWExXXXSVSVNW5uitGVdGFM1ytZdKVhXnGSfD3nvts2ArU2de9PrO0-D8Q_aGdL_KiOt9crtdFUqUUuZEnx8SuDdjy2GqAcKFtOsI6ataSGlUhWTj67y4Gq9C8Fj91yGM73nqTf6wFPveWo21YlnCvvwssXnoD_0_s6AaVE7Qq-DTQgstrRnqVtH_6_wG6Eotr8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446670444</pqid></control><display><type>article</type><title>Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Sumer, Simon Alexander ; Hoffmann, Sandra ; Laue, Svenja ; Campbell, Birgit ; Raedecke, Kristin ; Frajs, Viktoria ; Clauss, Sebastian ; Kääb, Stefan ; Janssen, Johannes W.G. ; Jauch, Anna ; Laugwitz, Karl-Ludwig ; Dorn, Tatjana ; Moretti, Alessandra ; Rappold, Gudrun A.</creator><creatorcontrib>Sumer, Simon Alexander ; Hoffmann, Sandra ; Laue, Svenja ; Campbell, Birgit ; Raedecke, Kristin ; Frajs, Viktoria ; Clauss, Sebastian ; Kääb, Stefan ; Janssen, Johannes W.G. ; Jauch, Anna ; Laugwitz, Karl-Ludwig ; Dorn, Tatjana ; Moretti, Alessandra ; Rappold, Gudrun A.</creatorcontrib><description>Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro. [Display omitted] •Model for atrial fibrillation using patient-specific and gene-corrected hiPSCs•Scarless gene correction of hiPSCs derived from patients with heterozygous mutations•Isolation of rare isogenic clones via sib selection and allele quantification•Strategy for difficult-to-target regions with low editing efficiency In this study, Sumer, Hoffmann, et al., developed a strategy for the isolation of extremely rare hiPSC clones, suitable for scarless correction of heterozygous mutations by random enrichment of precisely edited cells and their detection via allele quantification. This strategy facilitates hiPSC-based gene correction regardless of the gene-editing approach.</description><identifier>ISSN: 2213-6711</identifier><identifier>EISSN: 2213-6711</identifier><identifier>DOI: 10.1016/j.stemcr.2020.08.015</identifier><identifier>PMID: 32976766</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; atrial fibrillation ; Atrial Fibrillation - genetics ; Base Sequence ; Clone Cells ; Gene Editing ; Heterozygote ; High-Throughput Nucleotide Sequencing ; Homeodomain Proteins - genetics ; Humans ; Induced Pluripotent Stem Cells - pathology ; isogenic control ; Mutation - genetics ; patient-derived iPSCs ; precise gene editing ; Recombinational DNA Repair ; Resource ; RNA, Guide, CRISPR-Cas Systems ; SHOX2 ; sib selection ; Single-Cell Analysis ; Stochastic Processes</subject><ispartof>Stem cell reports, 2020-10, Vol.15 (4), p.999-1013</ispartof><rights>2020 The Authors</rights><rights>Copyright © 2020 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Authors 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-fcc6a1f9850bcded28c06a14550c03cec039a1f674ad9a35c593aa7b6c9f520f3</citedby><cites>FETCH-LOGICAL-c463t-fcc6a1f9850bcded28c06a14550c03cec039a1f674ad9a35c593aa7b6c9f520f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562944/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562944/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32976766$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sumer, Simon Alexander</creatorcontrib><creatorcontrib>Hoffmann, Sandra</creatorcontrib><creatorcontrib>Laue, Svenja</creatorcontrib><creatorcontrib>Campbell, Birgit</creatorcontrib><creatorcontrib>Raedecke, Kristin</creatorcontrib><creatorcontrib>Frajs, Viktoria</creatorcontrib><creatorcontrib>Clauss, Sebastian</creatorcontrib><creatorcontrib>Kääb, Stefan</creatorcontrib><creatorcontrib>Janssen, Johannes W.G.</creatorcontrib><creatorcontrib>Jauch, Anna</creatorcontrib><creatorcontrib>Laugwitz, Karl-Ludwig</creatorcontrib><creatorcontrib>Dorn, Tatjana</creatorcontrib><creatorcontrib>Moretti, Alessandra</creatorcontrib><creatorcontrib>Rappold, Gudrun A.</creatorcontrib><title>Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection</title><title>Stem cell reports</title><addtitle>Stem Cell Reports</addtitle><description>Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro. [Display omitted] •Model for atrial fibrillation using patient-specific and gene-corrected hiPSCs•Scarless gene correction of hiPSCs derived from patients with heterozygous mutations•Isolation of rare isogenic clones via sib selection and allele quantification•Strategy for difficult-to-target regions with low editing efficiency In this study, Sumer, Hoffmann, et al., developed a strategy for the isolation of extremely rare hiPSC clones, suitable for scarless correction of heterozygous mutations by random enrichment of precisely edited cells and their detection via allele quantification. This strategy facilitates hiPSC-based gene correction regardless of the gene-editing approach.</description><subject>Alleles</subject><subject>atrial fibrillation</subject><subject>Atrial Fibrillation - genetics</subject><subject>Base Sequence</subject><subject>Clone Cells</subject><subject>Gene Editing</subject><subject>Heterozygote</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Homeodomain Proteins - genetics</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - pathology</subject><subject>isogenic control</subject><subject>Mutation - genetics</subject><subject>patient-derived iPSCs</subject><subject>precise gene editing</subject><subject>Recombinational DNA Repair</subject><subject>Resource</subject><subject>RNA, Guide, CRISPR-Cas Systems</subject><subject>SHOX2</subject><subject>sib selection</subject><subject>Single-Cell Analysis</subject><subject>Stochastic Processes</subject><issn>2213-6711</issn><issn>2213-6711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kd1u0zAUxyMEYtPYGyB0LrlpsB3HaW6QprKtkzatUkHiznKck_ZUSTxst9N4Ch4Zdx1j3OAL-8j_8_3Lsvec5Zxx9WmTh4iD9blgguVsmjNevsqOheDFRFWcv35hH2WnIWxYOnXNheRvs6NC1JWqlDrOfi08WgoIM-eTFcmN4DqYY0Tvfj6s3DbAcn77XcDNNpq9HIBGWNNiOQvwBT3tsIXOuwEWScYxBrinuIaz6Mn0cEGNp75_jIQdGbjE0Q0I5y1FGldgxhaW1MAS-0P1d9mbzvQBT5_ek-zbxfnX2XxyfXt5NTu7nlipijjprFWGd_W0ZI1tsRVTy9KHLEtmWWExXXXSVSVNW5uitGVdGFM1ytZdKVhXnGSfD3nvts2ArU2de9PrO0-D8Q_aGdL_KiOt9crtdFUqUUuZEnx8SuDdjy2GqAcKFtOsI6ataSGlUhWTj67y4Gq9C8Fj91yGM73nqTf6wFPveWo21YlnCvvwssXnoD_0_s6AaVE7Qq-DTQgstrRnqVtH_6_wG6Eotr8</recordid><startdate>20201013</startdate><enddate>20201013</enddate><creator>Sumer, Simon Alexander</creator><creator>Hoffmann, Sandra</creator><creator>Laue, Svenja</creator><creator>Campbell, Birgit</creator><creator>Raedecke, Kristin</creator><creator>Frajs, Viktoria</creator><creator>Clauss, Sebastian</creator><creator>Kääb, Stefan</creator><creator>Janssen, Johannes W.G.</creator><creator>Jauch, Anna</creator><creator>Laugwitz, Karl-Ludwig</creator><creator>Dorn, Tatjana</creator><creator>Moretti, Alessandra</creator><creator>Rappold, Gudrun A.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201013</creationdate><title>Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection</title><author>Sumer, Simon Alexander ; Hoffmann, Sandra ; Laue, Svenja ; Campbell, Birgit ; Raedecke, Kristin ; Frajs, Viktoria ; Clauss, Sebastian ; Kääb, Stefan ; Janssen, Johannes W.G. ; Jauch, Anna ; Laugwitz, Karl-Ludwig ; Dorn, Tatjana ; Moretti, Alessandra ; Rappold, Gudrun A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-fcc6a1f9850bcded28c06a14550c03cec039a1f674ad9a35c593aa7b6c9f520f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>atrial fibrillation</topic><topic>Atrial Fibrillation - genetics</topic><topic>Base Sequence</topic><topic>Clone Cells</topic><topic>Gene Editing</topic><topic>Heterozygote</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Homeodomain Proteins - genetics</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - pathology</topic><topic>isogenic control</topic><topic>Mutation - genetics</topic><topic>patient-derived iPSCs</topic><topic>precise gene editing</topic><topic>Recombinational DNA Repair</topic><topic>Resource</topic><topic>RNA, Guide, CRISPR-Cas Systems</topic><topic>SHOX2</topic><topic>sib selection</topic><topic>Single-Cell Analysis</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumer, Simon Alexander</creatorcontrib><creatorcontrib>Hoffmann, Sandra</creatorcontrib><creatorcontrib>Laue, Svenja</creatorcontrib><creatorcontrib>Campbell, Birgit</creatorcontrib><creatorcontrib>Raedecke, Kristin</creatorcontrib><creatorcontrib>Frajs, Viktoria</creatorcontrib><creatorcontrib>Clauss, Sebastian</creatorcontrib><creatorcontrib>Kääb, Stefan</creatorcontrib><creatorcontrib>Janssen, Johannes W.G.</creatorcontrib><creatorcontrib>Jauch, Anna</creatorcontrib><creatorcontrib>Laugwitz, Karl-Ludwig</creatorcontrib><creatorcontrib>Dorn, Tatjana</creatorcontrib><creatorcontrib>Moretti, Alessandra</creatorcontrib><creatorcontrib>Rappold, Gudrun A.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Stem cell reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumer, Simon Alexander</au><au>Hoffmann, Sandra</au><au>Laue, Svenja</au><au>Campbell, Birgit</au><au>Raedecke, Kristin</au><au>Frajs, Viktoria</au><au>Clauss, Sebastian</au><au>Kääb, Stefan</au><au>Janssen, Johannes W.G.</au><au>Jauch, Anna</au><au>Laugwitz, Karl-Ludwig</au><au>Dorn, Tatjana</au><au>Moretti, Alessandra</au><au>Rappold, Gudrun A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection</atitle><jtitle>Stem cell reports</jtitle><addtitle>Stem Cell Reports</addtitle><date>2020-10-13</date><risdate>2020</risdate><volume>15</volume><issue>4</issue><spage>999</spage><epage>1013</epage><pages>999-1013</pages><issn>2213-6711</issn><eissn>2213-6711</eissn><abstract>Patient-specific human induced pluripotent stem cells (hiPSCs) offer unprecedented opportunities for the investigation of multigenic disease, personalized medicine, and stem cell therapy. For heterogeneous diseases such as atrial fibrillation (AF), however, precise correction of the associated mutation is crucial. Here, we generated and corrected hiPSC lines from two AF patients carrying different heterozygous SHOX2 mutations. We developed a strategy for the scarless correction of heterozygous mutations, based on stochastic enrichment by sib selection, followed by allele quantification via digital PCR and next-generation sequencing to detect isogenic subpopulations. This allowed enriching edited cells 8- to 20-fold. The method does not require antibiotic selection or cell sorting and can be easily combined with base-and-prime editing approaches. Our strategy helps to overcome low efficiencies of homology-dependent repair in hiPSCs and facilitates the generation of isogenic control lines that represent the gold standard for modeling complex diseases in vitro. [Display omitted] •Model for atrial fibrillation using patient-specific and gene-corrected hiPSCs•Scarless gene correction of hiPSCs derived from patients with heterozygous mutations•Isolation of rare isogenic clones via sib selection and allele quantification•Strategy for difficult-to-target regions with low editing efficiency In this study, Sumer, Hoffmann, et al., developed a strategy for the isolation of extremely rare hiPSC clones, suitable for scarless correction of heterozygous mutations by random enrichment of precisely edited cells and their detection via allele quantification. This strategy facilitates hiPSC-based gene correction regardless of the gene-editing approach.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32976766</pmid><doi>10.1016/j.stemcr.2020.08.015</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2213-6711
ispartof Stem cell reports, 2020-10, Vol.15 (4), p.999-1013
issn 2213-6711
2213-6711
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7562944
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Alleles
atrial fibrillation
Atrial Fibrillation - genetics
Base Sequence
Clone Cells
Gene Editing
Heterozygote
High-Throughput Nucleotide Sequencing
Homeodomain Proteins - genetics
Humans
Induced Pluripotent Stem Cells - pathology
isogenic control
Mutation - genetics
patient-derived iPSCs
precise gene editing
Recombinational DNA Repair
Resource
RNA, Guide, CRISPR-Cas Systems
SHOX2
sib selection
Single-Cell Analysis
Stochastic Processes
title Precise Correction of Heterozygous SHOX2 Mutations in hiPSCs Derived from Patients with Atrial Fibrillation via Genome Editing and Sib Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precise%20Correction%20of%20Heterozygous%20SHOX2%20Mutations%20in%20hiPSCs%20Derived%20from%20Patients%20with%20Atrial%20Fibrillation%20via%20Genome%20Editing%20and%20Sib%20Selection&rft.jtitle=Stem%20cell%20reports&rft.au=Sumer,%20Simon%20Alexander&rft.date=2020-10-13&rft.volume=15&rft.issue=4&rft.spage=999&rft.epage=1013&rft.pages=999-1013&rft.issn=2213-6711&rft.eissn=2213-6711&rft_id=info:doi/10.1016/j.stemcr.2020.08.015&rft_dat=%3Cproquest_pubme%3E2446670444%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446670444&rft_id=info:pmid/32976766&rft_els_id=S2213671120303465&rfr_iscdi=true