An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome
To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with cl...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2020-10, Vol.39 (20), p.e105693-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | e105693 |
container_title | The EMBO journal |
container_volume | 39 |
creator | Tüshaus, Johanna Müller, Stephan A Kataka, Evans Sioma Zaucha, Jan Sebastian Monasor, Laura Su, Minhui Güner, Gökhan Jocher, Georg Tahirovic, Sabina Frishman, Dmitrij Simons, Mikael Lichtenthaler, Stefan F |
description | To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with click sugars” (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS‐induced neuroinflammation and to establish the cell type‐resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins
in vitro
and
in vivo
are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer‐linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type‐specific biomarkers for CNS diseases.
Synopsis
The proteomic hiSPECS method miniaturizes secretome analysis and establishes the cell type‐resolved mouse brain secretome resource. This enabled the mapping of the cellular origin of proteins in CSF and secreted from brain slices under neuroinflammatory conditions.
hiSPECS miniaturizes secretome analysis in the presence of serum proteins.
The cell‐type resolved secretome resource includes the secretome of primary astrocytes, microglia, oligodendrocytes and cortical versus hippocampal neurons.
Proteolytic shedding of membrane proteins is a major mechanism for protein secretion.
The resource allows mapping the cellular origin of proteins in CSF and secreted from brain slices upon LPS stimulation.
hiSPECS identifies CD200 and ADAM22 as new substrates of the Alzheimer‐linked protease BACE1.
Graphical Abstract
hiSPECS, a miniaturized proteomics protocol based on pull‐down of glycosylated secretory proteins from smaller numbers of cells, defines the specific secretomes of astrocytes, microglia, neurons and oligodendrocytes from primary cells, as well as secretion changes in LPS‐induced inflammatory conditions. |
doi_str_mv | 10.15252/embj.2020105693 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7560198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444606714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5193-787fd6c3472179713c9b8de1e90ad914d7963f8c9c86f6b9a33544f9eeeba1373</originalsourceid><addsrcrecordid>eNqFkc1u1DAcxC0EokvhzglZ4sIlxZ9xLCGkUpUvFXGBs-U4_3S9SuLUdhYtJx6BZ-RJcNnSUiTExT74N6MZD0KPKTmikkn2HMZ2c8QII5TIWvM7aEVFTSpGlLyLVoTVtBK00QfoQUobQohsFL2PDjjTUkiqVqg_nnCYsx_9V-jwxWKn7LPNfgt4jiFDGL1LeIS8Dh2GlG07-LSGhPMasINhwHk3w49v3yOkMGyLxxiWBLiN1k84gYuQwwgP0b3eDgkeXd2H6PPr008nb6uzj2_enRyfVU5SzSvVqL6rHReKUaUV5U63TQcUNLGdpqJTuuZ947Rr6r5uteVcCtFrAGgt5Yofopd733lpR-gcTDnawczRjzbuTLDe3H6Z_Nqch61RsiZUN8Xg2ZVBDBdLKWxGny572glKMcOEKB9cKyoK-vQvdBOWOJV6hZKU8nKyQpE95WJIKUJ_HYYS82tEczmiuRmxSJ78WeJa8Hu1ArzYA1_8ALv_GprTD6_e3_Kne3kqyukc4k3wf2b6CYIPvQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451132452</pqid></control><display><type>article</type><title>An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Tüshaus, Johanna ; Müller, Stephan A ; Kataka, Evans Sioma ; Zaucha, Jan ; Sebastian Monasor, Laura ; Su, Minhui ; Güner, Gökhan ; Jocher, Georg ; Tahirovic, Sabina ; Frishman, Dmitrij ; Simons, Mikael ; Lichtenthaler, Stefan F</creator><creatorcontrib>Tüshaus, Johanna ; Müller, Stephan A ; Kataka, Evans Sioma ; Zaucha, Jan ; Sebastian Monasor, Laura ; Su, Minhui ; Güner, Gökhan ; Jocher, Georg ; Tahirovic, Sabina ; Frishman, Dmitrij ; Simons, Mikael ; Lichtenthaler, Stefan F</creatorcontrib><description>To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with click sugars” (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS‐induced neuroinflammation and to establish the cell type‐resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins
in vitro
and
in vivo
are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer‐linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type‐specific biomarkers for CNS diseases.
Synopsis
The proteomic hiSPECS method miniaturizes secretome analysis and establishes the cell type‐resolved mouse brain secretome resource. This enabled the mapping of the cellular origin of proteins in CSF and secreted from brain slices under neuroinflammatory conditions.
hiSPECS miniaturizes secretome analysis in the presence of serum proteins.
The cell‐type resolved secretome resource includes the secretome of primary astrocytes, microglia, oligodendrocytes and cortical versus hippocampal neurons.
Proteolytic shedding of membrane proteins is a major mechanism for protein secretion.
The resource allows mapping the cellular origin of proteins in CSF and secreted from brain slices upon LPS stimulation.
hiSPECS identifies CD200 and ADAM22 as new substrates of the Alzheimer‐linked protease BACE1.
Graphical Abstract
hiSPECS, a miniaturized proteomics protocol based on pull‐down of glycosylated secretory proteins from smaller numbers of cells, defines the specific secretomes of astrocytes, microglia, neurons and oligodendrocytes from primary cells, as well as secretion changes in LPS‐induced inflammatory conditions.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2020105693</identifier><identifier>PMID: 32954517</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>ADAM Proteins - cerebrospinal fluid ; ADAM Proteins - metabolism ; Amyloid Precursor Protein Secretases - antagonists & inhibitors ; Amyloid Precursor Protein Secretases - cerebrospinal fluid ; Amyloid Precursor Protein Secretases - metabolism ; Animals ; Antigens, CD - cerebrospinal fluid ; Antigens, CD - metabolism ; Aspartic Acid Endopeptidases - antagonists & inhibitors ; Aspartic Acid Endopeptidases - cerebrospinal fluid ; Aspartic Acid Endopeptidases - metabolism ; Astrocytes ; Astrocytes - metabolism ; BACE1 ; Biomarkers ; Brain ; Brain - cytology ; Brain - metabolism ; brain cells ; Brain mapping ; Brain slice preparation ; CD200 antigen ; Cells, Cultured ; Central nervous system ; Cerebrospinal fluid ; Cerebrospinal Fluid Proteins ; Chromatography, Liquid ; CSF ; EMBO27 ; EMBO56 ; Gene Ontology ; Hippocampus ; Inflammation ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; Membrane proteins ; Membranes ; Mice ; Mice, Inbred C57BL ; Microglia ; Microglia - metabolism ; Nerve Tissue Proteins - cerebrospinal fluid ; Nerve Tissue Proteins - metabolism ; Nervous system ; Neurons ; Neurons - metabolism ; Oligodendrocytes ; Oligodendroglia - metabolism ; Peptide mapping ; Principal Component Analysis ; Protease ; Proteinase ; Proteins ; Proteolysis ; Proteome - metabolism ; Proteomics ; Proteomics - methods ; Resource ; Secretion ; Secretome ; secretomics ; Serum proteins ; Software ; Substrates ; Sugar ; Tandem Mass Spectrometry ; β-Site APP-cleaving enzyme 1</subject><ispartof>The EMBO journal, 2020-10, Vol.39 (20), p.e105693-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5193-787fd6c3472179713c9b8de1e90ad914d7963f8c9c86f6b9a33544f9eeeba1373</citedby><cites>FETCH-LOGICAL-c5193-787fd6c3472179713c9b8de1e90ad914d7963f8c9c86f6b9a33544f9eeeba1373</cites><orcidid>0000-0001-9206-8093 ; 0000-0003-2211-2575 ; 0000-0001-5803-6098 ; 0000-0003-4403-9559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560198/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560198/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32954517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tüshaus, Johanna</creatorcontrib><creatorcontrib>Müller, Stephan A</creatorcontrib><creatorcontrib>Kataka, Evans Sioma</creatorcontrib><creatorcontrib>Zaucha, Jan</creatorcontrib><creatorcontrib>Sebastian Monasor, Laura</creatorcontrib><creatorcontrib>Su, Minhui</creatorcontrib><creatorcontrib>Güner, Gökhan</creatorcontrib><creatorcontrib>Jocher, Georg</creatorcontrib><creatorcontrib>Tahirovic, Sabina</creatorcontrib><creatorcontrib>Frishman, Dmitrij</creatorcontrib><creatorcontrib>Simons, Mikael</creatorcontrib><creatorcontrib>Lichtenthaler, Stefan F</creatorcontrib><title>An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with click sugars” (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS‐induced neuroinflammation and to establish the cell type‐resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins
in vitro
and
in vivo
are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer‐linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type‐specific biomarkers for CNS diseases.
Synopsis
The proteomic hiSPECS method miniaturizes secretome analysis and establishes the cell type‐resolved mouse brain secretome resource. This enabled the mapping of the cellular origin of proteins in CSF and secreted from brain slices under neuroinflammatory conditions.
hiSPECS miniaturizes secretome analysis in the presence of serum proteins.
The cell‐type resolved secretome resource includes the secretome of primary astrocytes, microglia, oligodendrocytes and cortical versus hippocampal neurons.
Proteolytic shedding of membrane proteins is a major mechanism for protein secretion.
The resource allows mapping the cellular origin of proteins in CSF and secreted from brain slices upon LPS stimulation.
hiSPECS identifies CD200 and ADAM22 as new substrates of the Alzheimer‐linked protease BACE1.
Graphical Abstract
hiSPECS, a miniaturized proteomics protocol based on pull‐down of glycosylated secretory proteins from smaller numbers of cells, defines the specific secretomes of astrocytes, microglia, neurons and oligodendrocytes from primary cells, as well as secretion changes in LPS‐induced inflammatory conditions.</description><subject>ADAM Proteins - cerebrospinal fluid</subject><subject>ADAM Proteins - metabolism</subject><subject>Amyloid Precursor Protein Secretases - antagonists & inhibitors</subject><subject>Amyloid Precursor Protein Secretases - cerebrospinal fluid</subject><subject>Amyloid Precursor Protein Secretases - metabolism</subject><subject>Animals</subject><subject>Antigens, CD - cerebrospinal fluid</subject><subject>Antigens, CD - metabolism</subject><subject>Aspartic Acid Endopeptidases - antagonists & inhibitors</subject><subject>Aspartic Acid Endopeptidases - cerebrospinal fluid</subject><subject>Aspartic Acid Endopeptidases - metabolism</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>BACE1</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - metabolism</subject><subject>brain cells</subject><subject>Brain mapping</subject><subject>Brain slice preparation</subject><subject>CD200 antigen</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Cerebrospinal fluid</subject><subject>Cerebrospinal Fluid Proteins</subject><subject>Chromatography, Liquid</subject><subject>CSF</subject><subject>EMBO27</subject><subject>EMBO56</subject><subject>Gene Ontology</subject><subject>Hippocampus</subject><subject>Inflammation</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microglia</subject><subject>Microglia - metabolism</subject><subject>Nerve Tissue Proteins - cerebrospinal fluid</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - metabolism</subject><subject>Peptide mapping</subject><subject>Principal Component Analysis</subject><subject>Protease</subject><subject>Proteinase</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Resource</subject><subject>Secretion</subject><subject>Secretome</subject><subject>secretomics</subject><subject>Serum proteins</subject><subject>Software</subject><subject>Substrates</subject><subject>Sugar</subject><subject>Tandem Mass Spectrometry</subject><subject>β-Site APP-cleaving enzyme 1</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAcxC0EokvhzglZ4sIlxZ9xLCGkUpUvFXGBs-U4_3S9SuLUdhYtJx6BZ-RJcNnSUiTExT74N6MZD0KPKTmikkn2HMZ2c8QII5TIWvM7aEVFTSpGlLyLVoTVtBK00QfoQUobQohsFL2PDjjTUkiqVqg_nnCYsx_9V-jwxWKn7LPNfgt4jiFDGL1LeIS8Dh2GlG07-LSGhPMasINhwHk3w49v3yOkMGyLxxiWBLiN1k84gYuQwwgP0b3eDgkeXd2H6PPr008nb6uzj2_enRyfVU5SzSvVqL6rHReKUaUV5U63TQcUNLGdpqJTuuZ947Rr6r5uteVcCtFrAGgt5Yofopd733lpR-gcTDnawczRjzbuTLDe3H6Z_Nqch61RsiZUN8Xg2ZVBDBdLKWxGny572glKMcOEKB9cKyoK-vQvdBOWOJV6hZKU8nKyQpE95WJIKUJ_HYYS82tEczmiuRmxSJ78WeJa8Hu1ArzYA1_8ALv_GprTD6_e3_Kne3kqyukc4k3wf2b6CYIPvQQ</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Tüshaus, Johanna</creator><creator>Müller, Stephan A</creator><creator>Kataka, Evans Sioma</creator><creator>Zaucha, Jan</creator><creator>Sebastian Monasor, Laura</creator><creator>Su, Minhui</creator><creator>Güner, Gökhan</creator><creator>Jocher, Georg</creator><creator>Tahirovic, Sabina</creator><creator>Frishman, Dmitrij</creator><creator>Simons, Mikael</creator><creator>Lichtenthaler, Stefan F</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9206-8093</orcidid><orcidid>https://orcid.org/0000-0003-2211-2575</orcidid><orcidid>https://orcid.org/0000-0001-5803-6098</orcidid><orcidid>https://orcid.org/0000-0003-4403-9559</orcidid></search><sort><creationdate>20201015</creationdate><title>An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome</title><author>Tüshaus, Johanna ; Müller, Stephan A ; Kataka, Evans Sioma ; Zaucha, Jan ; Sebastian Monasor, Laura ; Su, Minhui ; Güner, Gökhan ; Jocher, Georg ; Tahirovic, Sabina ; Frishman, Dmitrij ; Simons, Mikael ; Lichtenthaler, Stefan F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5193-787fd6c3472179713c9b8de1e90ad914d7963f8c9c86f6b9a33544f9eeeba1373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ADAM Proteins - cerebrospinal fluid</topic><topic>ADAM Proteins - metabolism</topic><topic>Amyloid Precursor Protein Secretases - antagonists & inhibitors</topic><topic>Amyloid Precursor Protein Secretases - cerebrospinal fluid</topic><topic>Amyloid Precursor Protein Secretases - metabolism</topic><topic>Animals</topic><topic>Antigens, CD - cerebrospinal fluid</topic><topic>Antigens, CD - metabolism</topic><topic>Aspartic Acid Endopeptidases - antagonists & inhibitors</topic><topic>Aspartic Acid Endopeptidases - cerebrospinal fluid</topic><topic>Aspartic Acid Endopeptidases - metabolism</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>BACE1</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - metabolism</topic><topic>brain cells</topic><topic>Brain mapping</topic><topic>Brain slice preparation</topic><topic>CD200 antigen</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Cerebrospinal fluid</topic><topic>Cerebrospinal Fluid Proteins</topic><topic>Chromatography, Liquid</topic><topic>CSF</topic><topic>EMBO27</topic><topic>EMBO56</topic><topic>Gene Ontology</topic><topic>Hippocampus</topic><topic>Inflammation</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microglia</topic><topic>Microglia - metabolism</topic><topic>Nerve Tissue Proteins - cerebrospinal fluid</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - metabolism</topic><topic>Peptide mapping</topic><topic>Principal Component Analysis</topic><topic>Protease</topic><topic>Proteinase</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Resource</topic><topic>Secretion</topic><topic>Secretome</topic><topic>secretomics</topic><topic>Serum proteins</topic><topic>Software</topic><topic>Substrates</topic><topic>Sugar</topic><topic>Tandem Mass Spectrometry</topic><topic>β-Site APP-cleaving enzyme 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tüshaus, Johanna</creatorcontrib><creatorcontrib>Müller, Stephan A</creatorcontrib><creatorcontrib>Kataka, Evans Sioma</creatorcontrib><creatorcontrib>Zaucha, Jan</creatorcontrib><creatorcontrib>Sebastian Monasor, Laura</creatorcontrib><creatorcontrib>Su, Minhui</creatorcontrib><creatorcontrib>Güner, Gökhan</creatorcontrib><creatorcontrib>Jocher, Georg</creatorcontrib><creatorcontrib>Tahirovic, Sabina</creatorcontrib><creatorcontrib>Frishman, Dmitrij</creatorcontrib><creatorcontrib>Simons, Mikael</creatorcontrib><creatorcontrib>Lichtenthaler, Stefan F</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tüshaus, Johanna</au><au>Müller, Stephan A</au><au>Kataka, Evans Sioma</au><au>Zaucha, Jan</au><au>Sebastian Monasor, Laura</au><au>Su, Minhui</au><au>Güner, Gökhan</au><au>Jocher, Georg</au><au>Tahirovic, Sabina</au><au>Frishman, Dmitrij</au><au>Simons, Mikael</au><au>Lichtenthaler, Stefan F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-10-15</date><risdate>2020</risdate><volume>39</volume><issue>20</issue><spage>e105693</spage><epage>n/a</epage><pages>e105693-n/a</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><abstract>To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with click sugars” (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS‐induced neuroinflammation and to establish the cell type‐resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins
in vitro
and
in vivo
are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer‐linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type‐specific biomarkers for CNS diseases.
Synopsis
The proteomic hiSPECS method miniaturizes secretome analysis and establishes the cell type‐resolved mouse brain secretome resource. This enabled the mapping of the cellular origin of proteins in CSF and secreted from brain slices under neuroinflammatory conditions.
hiSPECS miniaturizes secretome analysis in the presence of serum proteins.
The cell‐type resolved secretome resource includes the secretome of primary astrocytes, microglia, oligodendrocytes and cortical versus hippocampal neurons.
Proteolytic shedding of membrane proteins is a major mechanism for protein secretion.
The resource allows mapping the cellular origin of proteins in CSF and secreted from brain slices upon LPS stimulation.
hiSPECS identifies CD200 and ADAM22 as new substrates of the Alzheimer‐linked protease BACE1.
Graphical Abstract
hiSPECS, a miniaturized proteomics protocol based on pull‐down of glycosylated secretory proteins from smaller numbers of cells, defines the specific secretomes of astrocytes, microglia, neurons and oligodendrocytes from primary cells, as well as secretion changes in LPS‐induced inflammatory conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32954517</pmid><doi>10.15252/embj.2020105693</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9206-8093</orcidid><orcidid>https://orcid.org/0000-0003-2211-2575</orcidid><orcidid>https://orcid.org/0000-0001-5803-6098</orcidid><orcidid>https://orcid.org/0000-0003-4403-9559</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2020-10, Vol.39 (20), p.e105693-n/a |
issn | 0261-4189 1460-2075 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7560198 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | ADAM Proteins - cerebrospinal fluid ADAM Proteins - metabolism Amyloid Precursor Protein Secretases - antagonists & inhibitors Amyloid Precursor Protein Secretases - cerebrospinal fluid Amyloid Precursor Protein Secretases - metabolism Animals Antigens, CD - cerebrospinal fluid Antigens, CD - metabolism Aspartic Acid Endopeptidases - antagonists & inhibitors Aspartic Acid Endopeptidases - cerebrospinal fluid Aspartic Acid Endopeptidases - metabolism Astrocytes Astrocytes - metabolism BACE1 Biomarkers Brain Brain - cytology Brain - metabolism brain cells Brain mapping Brain slice preparation CD200 antigen Cells, Cultured Central nervous system Cerebrospinal fluid Cerebrospinal Fluid Proteins Chromatography, Liquid CSF EMBO27 EMBO56 Gene Ontology Hippocampus Inflammation Lipopolysaccharides Lipopolysaccharides - pharmacology Membrane proteins Membranes Mice Mice, Inbred C57BL Microglia Microglia - metabolism Nerve Tissue Proteins - cerebrospinal fluid Nerve Tissue Proteins - metabolism Nervous system Neurons Neurons - metabolism Oligodendrocytes Oligodendroglia - metabolism Peptide mapping Principal Component Analysis Protease Proteinase Proteins Proteolysis Proteome - metabolism Proteomics Proteomics - methods Resource Secretion Secretome secretomics Serum proteins Software Substrates Sugar Tandem Mass Spectrometry β-Site APP-cleaving enzyme 1 |
title | An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimized%20quantitative%20proteomics%20method%20establishes%20the%20cell%20type%E2%80%90resolved%20mouse%20brain%20secretome&rft.jtitle=The%20EMBO%20journal&rft.au=T%C3%BCshaus,%20Johanna&rft.date=2020-10-15&rft.volume=39&rft.issue=20&rft.spage=e105693&rft.epage=n/a&rft.pages=e105693-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2020105693&rft_dat=%3Cproquest_pubme%3E2444606714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451132452&rft_id=info:pmid/32954517&rfr_iscdi=true |