An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome

To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The EMBO journal 2020-10, Vol.39 (20), p.e105693-n/a
Hauptverfasser: Tüshaus, Johanna, Müller, Stephan A, Kataka, Evans Sioma, Zaucha, Jan, Sebastian Monasor, Laura, Su, Minhui, Güner, Gökhan, Jocher, Georg, Tahirovic, Sabina, Frishman, Dmitrij, Simons, Mikael, Lichtenthaler, Stefan F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page e105693
container_title The EMBO journal
container_volume 39
creator Tüshaus, Johanna
Müller, Stephan A
Kataka, Evans Sioma
Zaucha, Jan
Sebastian Monasor, Laura
Su, Minhui
Güner, Gökhan
Jocher, Georg
Tahirovic, Sabina
Frishman, Dmitrij
Simons, Mikael
Lichtenthaler, Stefan F
description To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with click sugars” (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS‐induced neuroinflammation and to establish the cell type‐resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer‐linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type‐specific biomarkers for CNS diseases. Synopsis The proteomic hiSPECS method miniaturizes secretome analysis and establishes the cell type‐resolved mouse brain secretome resource. This enabled the mapping of the cellular origin of proteins in CSF and secreted from brain slices under neuroinflammatory conditions. hiSPECS miniaturizes secretome analysis in the presence of serum proteins. The cell‐type resolved secretome resource includes the secretome of primary astrocytes, microglia, oligodendrocytes and cortical versus hippocampal neurons. Proteolytic shedding of membrane proteins is a major mechanism for protein secretion. The resource allows mapping the cellular origin of proteins in CSF and secreted from brain slices upon LPS stimulation. hiSPECS identifies CD200 and ADAM22 as new substrates of the Alzheimer‐linked protease BACE1. Graphical Abstract hiSPECS, a miniaturized proteomics protocol based on pull‐down of glycosylated secretory proteins from smaller numbers of cells, defines the specific secretomes of astrocytes, microglia, neurons and oligodendrocytes from primary cells, as well as secretion changes in LPS‐induced inflammatory conditions.
doi_str_mv 10.15252/embj.2020105693
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7560198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444606714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5193-787fd6c3472179713c9b8de1e90ad914d7963f8c9c86f6b9a33544f9eeeba1373</originalsourceid><addsrcrecordid>eNqFkc1u1DAcxC0EokvhzglZ4sIlxZ9xLCGkUpUvFXGBs-U4_3S9SuLUdhYtJx6BZ-RJcNnSUiTExT74N6MZD0KPKTmikkn2HMZ2c8QII5TIWvM7aEVFTSpGlLyLVoTVtBK00QfoQUobQohsFL2PDjjTUkiqVqg_nnCYsx_9V-jwxWKn7LPNfgt4jiFDGL1LeIS8Dh2GlG07-LSGhPMasINhwHk3w49v3yOkMGyLxxiWBLiN1k84gYuQwwgP0b3eDgkeXd2H6PPr008nb6uzj2_enRyfVU5SzSvVqL6rHReKUaUV5U63TQcUNLGdpqJTuuZ947Rr6r5uteVcCtFrAGgt5Yofopd733lpR-gcTDnawczRjzbuTLDe3H6Z_Nqch61RsiZUN8Xg2ZVBDBdLKWxGny572glKMcOEKB9cKyoK-vQvdBOWOJV6hZKU8nKyQpE95WJIKUJ_HYYS82tEczmiuRmxSJ78WeJa8Hu1ArzYA1_8ALv_GprTD6_e3_Kne3kqyukc4k3wf2b6CYIPvQQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451132452</pqid></control><display><type>article</type><title>An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Tüshaus, Johanna ; Müller, Stephan A ; Kataka, Evans Sioma ; Zaucha, Jan ; Sebastian Monasor, Laura ; Su, Minhui ; Güner, Gökhan ; Jocher, Georg ; Tahirovic, Sabina ; Frishman, Dmitrij ; Simons, Mikael ; Lichtenthaler, Stefan F</creator><creatorcontrib>Tüshaus, Johanna ; Müller, Stephan A ; Kataka, Evans Sioma ; Zaucha, Jan ; Sebastian Monasor, Laura ; Su, Minhui ; Güner, Gökhan ; Jocher, Georg ; Tahirovic, Sabina ; Frishman, Dmitrij ; Simons, Mikael ; Lichtenthaler, Stefan F</creatorcontrib><description>To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with click sugars” (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS‐induced neuroinflammation and to establish the cell type‐resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer‐linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type‐specific biomarkers for CNS diseases. Synopsis The proteomic hiSPECS method miniaturizes secretome analysis and establishes the cell type‐resolved mouse brain secretome resource. This enabled the mapping of the cellular origin of proteins in CSF and secreted from brain slices under neuroinflammatory conditions. hiSPECS miniaturizes secretome analysis in the presence of serum proteins. The cell‐type resolved secretome resource includes the secretome of primary astrocytes, microglia, oligodendrocytes and cortical versus hippocampal neurons. Proteolytic shedding of membrane proteins is a major mechanism for protein secretion. The resource allows mapping the cellular origin of proteins in CSF and secreted from brain slices upon LPS stimulation. hiSPECS identifies CD200 and ADAM22 as new substrates of the Alzheimer‐linked protease BACE1. Graphical Abstract hiSPECS, a miniaturized proteomics protocol based on pull‐down of glycosylated secretory proteins from smaller numbers of cells, defines the specific secretomes of astrocytes, microglia, neurons and oligodendrocytes from primary cells, as well as secretion changes in LPS‐induced inflammatory conditions.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2020105693</identifier><identifier>PMID: 32954517</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>ADAM Proteins - cerebrospinal fluid ; ADAM Proteins - metabolism ; Amyloid Precursor Protein Secretases - antagonists &amp; inhibitors ; Amyloid Precursor Protein Secretases - cerebrospinal fluid ; Amyloid Precursor Protein Secretases - metabolism ; Animals ; Antigens, CD - cerebrospinal fluid ; Antigens, CD - metabolism ; Aspartic Acid Endopeptidases - antagonists &amp; inhibitors ; Aspartic Acid Endopeptidases - cerebrospinal fluid ; Aspartic Acid Endopeptidases - metabolism ; Astrocytes ; Astrocytes - metabolism ; BACE1 ; Biomarkers ; Brain ; Brain - cytology ; Brain - metabolism ; brain cells ; Brain mapping ; Brain slice preparation ; CD200 antigen ; Cells, Cultured ; Central nervous system ; Cerebrospinal fluid ; Cerebrospinal Fluid Proteins ; Chromatography, Liquid ; CSF ; EMBO27 ; EMBO56 ; Gene Ontology ; Hippocampus ; Inflammation ; Lipopolysaccharides ; Lipopolysaccharides - pharmacology ; Membrane proteins ; Membranes ; Mice ; Mice, Inbred C57BL ; Microglia ; Microglia - metabolism ; Nerve Tissue Proteins - cerebrospinal fluid ; Nerve Tissue Proteins - metabolism ; Nervous system ; Neurons ; Neurons - metabolism ; Oligodendrocytes ; Oligodendroglia - metabolism ; Peptide mapping ; Principal Component Analysis ; Protease ; Proteinase ; Proteins ; Proteolysis ; Proteome - metabolism ; Proteomics ; Proteomics - methods ; Resource ; Secretion ; Secretome ; secretomics ; Serum proteins ; Software ; Substrates ; Sugar ; Tandem Mass Spectrometry ; β-Site APP-cleaving enzyme 1</subject><ispartof>The EMBO journal, 2020-10, Vol.39 (20), p.e105693-n/a</ispartof><rights>The Author(s) 2020</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license</rights><rights>2020 The Authors. Published under the terms of the CC BY 4.0 license.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5193-787fd6c3472179713c9b8de1e90ad914d7963f8c9c86f6b9a33544f9eeeba1373</citedby><cites>FETCH-LOGICAL-c5193-787fd6c3472179713c9b8de1e90ad914d7963f8c9c86f6b9a33544f9eeeba1373</cites><orcidid>0000-0001-9206-8093 ; 0000-0003-2211-2575 ; 0000-0001-5803-6098 ; 0000-0003-4403-9559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560198/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560198/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32954517$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tüshaus, Johanna</creatorcontrib><creatorcontrib>Müller, Stephan A</creatorcontrib><creatorcontrib>Kataka, Evans Sioma</creatorcontrib><creatorcontrib>Zaucha, Jan</creatorcontrib><creatorcontrib>Sebastian Monasor, Laura</creatorcontrib><creatorcontrib>Su, Minhui</creatorcontrib><creatorcontrib>Güner, Gökhan</creatorcontrib><creatorcontrib>Jocher, Georg</creatorcontrib><creatorcontrib>Tahirovic, Sabina</creatorcontrib><creatorcontrib>Frishman, Dmitrij</creatorcontrib><creatorcontrib>Simons, Mikael</creatorcontrib><creatorcontrib>Lichtenthaler, Stefan F</creatorcontrib><title>An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with click sugars” (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS‐induced neuroinflammation and to establish the cell type‐resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer‐linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type‐specific biomarkers for CNS diseases. Synopsis The proteomic hiSPECS method miniaturizes secretome analysis and establishes the cell type‐resolved mouse brain secretome resource. This enabled the mapping of the cellular origin of proteins in CSF and secreted from brain slices under neuroinflammatory conditions. hiSPECS miniaturizes secretome analysis in the presence of serum proteins. The cell‐type resolved secretome resource includes the secretome of primary astrocytes, microglia, oligodendrocytes and cortical versus hippocampal neurons. Proteolytic shedding of membrane proteins is a major mechanism for protein secretion. The resource allows mapping the cellular origin of proteins in CSF and secreted from brain slices upon LPS stimulation. hiSPECS identifies CD200 and ADAM22 as new substrates of the Alzheimer‐linked protease BACE1. Graphical Abstract hiSPECS, a miniaturized proteomics protocol based on pull‐down of glycosylated secretory proteins from smaller numbers of cells, defines the specific secretomes of astrocytes, microglia, neurons and oligodendrocytes from primary cells, as well as secretion changes in LPS‐induced inflammatory conditions.</description><subject>ADAM Proteins - cerebrospinal fluid</subject><subject>ADAM Proteins - metabolism</subject><subject>Amyloid Precursor Protein Secretases - antagonists &amp; inhibitors</subject><subject>Amyloid Precursor Protein Secretases - cerebrospinal fluid</subject><subject>Amyloid Precursor Protein Secretases - metabolism</subject><subject>Animals</subject><subject>Antigens, CD - cerebrospinal fluid</subject><subject>Antigens, CD - metabolism</subject><subject>Aspartic Acid Endopeptidases - antagonists &amp; inhibitors</subject><subject>Aspartic Acid Endopeptidases - cerebrospinal fluid</subject><subject>Aspartic Acid Endopeptidases - metabolism</subject><subject>Astrocytes</subject><subject>Astrocytes - metabolism</subject><subject>BACE1</subject><subject>Biomarkers</subject><subject>Brain</subject><subject>Brain - cytology</subject><subject>Brain - metabolism</subject><subject>brain cells</subject><subject>Brain mapping</subject><subject>Brain slice preparation</subject><subject>CD200 antigen</subject><subject>Cells, Cultured</subject><subject>Central nervous system</subject><subject>Cerebrospinal fluid</subject><subject>Cerebrospinal Fluid Proteins</subject><subject>Chromatography, Liquid</subject><subject>CSF</subject><subject>EMBO27</subject><subject>EMBO56</subject><subject>Gene Ontology</subject><subject>Hippocampus</subject><subject>Inflammation</subject><subject>Lipopolysaccharides</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>Membrane proteins</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microglia</subject><subject>Microglia - metabolism</subject><subject>Nerve Tissue Proteins - cerebrospinal fluid</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Nervous system</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Oligodendrocytes</subject><subject>Oligodendroglia - metabolism</subject><subject>Peptide mapping</subject><subject>Principal Component Analysis</subject><subject>Protease</subject><subject>Proteinase</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Proteome - metabolism</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Resource</subject><subject>Secretion</subject><subject>Secretome</subject><subject>secretomics</subject><subject>Serum proteins</subject><subject>Software</subject><subject>Substrates</subject><subject>Sugar</subject><subject>Tandem Mass Spectrometry</subject><subject>β-Site APP-cleaving enzyme 1</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAcxC0EokvhzglZ4sIlxZ9xLCGkUpUvFXGBs-U4_3S9SuLUdhYtJx6BZ-RJcNnSUiTExT74N6MZD0KPKTmikkn2HMZ2c8QII5TIWvM7aEVFTSpGlLyLVoTVtBK00QfoQUobQohsFL2PDjjTUkiqVqg_nnCYsx_9V-jwxWKn7LPNfgt4jiFDGL1LeIS8Dh2GlG07-LSGhPMasINhwHk3w49v3yOkMGyLxxiWBLiN1k84gYuQwwgP0b3eDgkeXd2H6PPr008nb6uzj2_enRyfVU5SzSvVqL6rHReKUaUV5U63TQcUNLGdpqJTuuZ947Rr6r5uteVcCtFrAGgt5Yofopd733lpR-gcTDnawczRjzbuTLDe3H6Z_Nqch61RsiZUN8Xg2ZVBDBdLKWxGny572glKMcOEKB9cKyoK-vQvdBOWOJV6hZKU8nKyQpE95WJIKUJ_HYYS82tEczmiuRmxSJ78WeJa8Hu1ArzYA1_8ALv_GprTD6_e3_Kne3kqyukc4k3wf2b6CYIPvQQ</recordid><startdate>20201015</startdate><enddate>20201015</enddate><creator>Tüshaus, Johanna</creator><creator>Müller, Stephan A</creator><creator>Kataka, Evans Sioma</creator><creator>Zaucha, Jan</creator><creator>Sebastian Monasor, Laura</creator><creator>Su, Minhui</creator><creator>Güner, Gökhan</creator><creator>Jocher, Georg</creator><creator>Tahirovic, Sabina</creator><creator>Frishman, Dmitrij</creator><creator>Simons, Mikael</creator><creator>Lichtenthaler, Stefan F</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9206-8093</orcidid><orcidid>https://orcid.org/0000-0003-2211-2575</orcidid><orcidid>https://orcid.org/0000-0001-5803-6098</orcidid><orcidid>https://orcid.org/0000-0003-4403-9559</orcidid></search><sort><creationdate>20201015</creationdate><title>An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome</title><author>Tüshaus, Johanna ; Müller, Stephan A ; Kataka, Evans Sioma ; Zaucha, Jan ; Sebastian Monasor, Laura ; Su, Minhui ; Güner, Gökhan ; Jocher, Georg ; Tahirovic, Sabina ; Frishman, Dmitrij ; Simons, Mikael ; Lichtenthaler, Stefan F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5193-787fd6c3472179713c9b8de1e90ad914d7963f8c9c86f6b9a33544f9eeeba1373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>ADAM Proteins - cerebrospinal fluid</topic><topic>ADAM Proteins - metabolism</topic><topic>Amyloid Precursor Protein Secretases - antagonists &amp; inhibitors</topic><topic>Amyloid Precursor Protein Secretases - cerebrospinal fluid</topic><topic>Amyloid Precursor Protein Secretases - metabolism</topic><topic>Animals</topic><topic>Antigens, CD - cerebrospinal fluid</topic><topic>Antigens, CD - metabolism</topic><topic>Aspartic Acid Endopeptidases - antagonists &amp; inhibitors</topic><topic>Aspartic Acid Endopeptidases - cerebrospinal fluid</topic><topic>Aspartic Acid Endopeptidases - metabolism</topic><topic>Astrocytes</topic><topic>Astrocytes - metabolism</topic><topic>BACE1</topic><topic>Biomarkers</topic><topic>Brain</topic><topic>Brain - cytology</topic><topic>Brain - metabolism</topic><topic>brain cells</topic><topic>Brain mapping</topic><topic>Brain slice preparation</topic><topic>CD200 antigen</topic><topic>Cells, Cultured</topic><topic>Central nervous system</topic><topic>Cerebrospinal fluid</topic><topic>Cerebrospinal Fluid Proteins</topic><topic>Chromatography, Liquid</topic><topic>CSF</topic><topic>EMBO27</topic><topic>EMBO56</topic><topic>Gene Ontology</topic><topic>Hippocampus</topic><topic>Inflammation</topic><topic>Lipopolysaccharides</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>Membrane proteins</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microglia</topic><topic>Microglia - metabolism</topic><topic>Nerve Tissue Proteins - cerebrospinal fluid</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Nervous system</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Oligodendrocytes</topic><topic>Oligodendroglia - metabolism</topic><topic>Peptide mapping</topic><topic>Principal Component Analysis</topic><topic>Protease</topic><topic>Proteinase</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Proteome - metabolism</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Resource</topic><topic>Secretion</topic><topic>Secretome</topic><topic>secretomics</topic><topic>Serum proteins</topic><topic>Software</topic><topic>Substrates</topic><topic>Sugar</topic><topic>Tandem Mass Spectrometry</topic><topic>β-Site APP-cleaving enzyme 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tüshaus, Johanna</creatorcontrib><creatorcontrib>Müller, Stephan A</creatorcontrib><creatorcontrib>Kataka, Evans Sioma</creatorcontrib><creatorcontrib>Zaucha, Jan</creatorcontrib><creatorcontrib>Sebastian Monasor, Laura</creatorcontrib><creatorcontrib>Su, Minhui</creatorcontrib><creatorcontrib>Güner, Gökhan</creatorcontrib><creatorcontrib>Jocher, Georg</creatorcontrib><creatorcontrib>Tahirovic, Sabina</creatorcontrib><creatorcontrib>Frishman, Dmitrij</creatorcontrib><creatorcontrib>Simons, Mikael</creatorcontrib><creatorcontrib>Lichtenthaler, Stefan F</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tüshaus, Johanna</au><au>Müller, Stephan A</au><au>Kataka, Evans Sioma</au><au>Zaucha, Jan</au><au>Sebastian Monasor, Laura</au><au>Su, Minhui</au><au>Güner, Gökhan</au><au>Jocher, Georg</au><au>Tahirovic, Sabina</au><au>Frishman, Dmitrij</au><au>Simons, Mikael</au><au>Lichtenthaler, Stefan F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2020-10-15</date><risdate>2020</risdate><volume>39</volume><issue>20</issue><spage>e105693</spage><epage>n/a</epage><pages>e105693-n/a</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><abstract>To understand how cells communicate in the nervous system, it is essential to define their secretome, which is challenging for primary cells because of large cell numbers being required. Here, we miniaturized secretome analysis by developing the “high‐performance secretome protein enrichment with click sugars” (hiSPECS) method. To demonstrate its broad utility, hiSPECS was used to identify the secretory response of brain slices upon LPS‐induced neuroinflammation and to establish the cell type‐resolved mouse brain secretome resource using primary astrocytes, microglia, neurons, and oligodendrocytes. This resource allowed mapping the cellular origin of CSF proteins and revealed that an unexpectedly high number of secreted proteins in vitro and in vivo are proteolytically cleaved membrane protein ectodomains. Two examples are neuronally secreted ADAM22 and CD200, which we identified as substrates of the Alzheimer‐linked protease BACE1. hiSPECS and the brain secretome resource can be widely exploited to systematically study protein secretion and brain function and to identify cell type‐specific biomarkers for CNS diseases. Synopsis The proteomic hiSPECS method miniaturizes secretome analysis and establishes the cell type‐resolved mouse brain secretome resource. This enabled the mapping of the cellular origin of proteins in CSF and secreted from brain slices under neuroinflammatory conditions. hiSPECS miniaturizes secretome analysis in the presence of serum proteins. The cell‐type resolved secretome resource includes the secretome of primary astrocytes, microglia, oligodendrocytes and cortical versus hippocampal neurons. Proteolytic shedding of membrane proteins is a major mechanism for protein secretion. The resource allows mapping the cellular origin of proteins in CSF and secreted from brain slices upon LPS stimulation. hiSPECS identifies CD200 and ADAM22 as new substrates of the Alzheimer‐linked protease BACE1. Graphical Abstract hiSPECS, a miniaturized proteomics protocol based on pull‐down of glycosylated secretory proteins from smaller numbers of cells, defines the specific secretomes of astrocytes, microglia, neurons and oligodendrocytes from primary cells, as well as secretion changes in LPS‐induced inflammatory conditions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32954517</pmid><doi>10.15252/embj.2020105693</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9206-8093</orcidid><orcidid>https://orcid.org/0000-0003-2211-2575</orcidid><orcidid>https://orcid.org/0000-0001-5803-6098</orcidid><orcidid>https://orcid.org/0000-0003-4403-9559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2020-10, Vol.39 (20), p.e105693-n/a
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7560198
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects ADAM Proteins - cerebrospinal fluid
ADAM Proteins - metabolism
Amyloid Precursor Protein Secretases - antagonists & inhibitors
Amyloid Precursor Protein Secretases - cerebrospinal fluid
Amyloid Precursor Protein Secretases - metabolism
Animals
Antigens, CD - cerebrospinal fluid
Antigens, CD - metabolism
Aspartic Acid Endopeptidases - antagonists & inhibitors
Aspartic Acid Endopeptidases - cerebrospinal fluid
Aspartic Acid Endopeptidases - metabolism
Astrocytes
Astrocytes - metabolism
BACE1
Biomarkers
Brain
Brain - cytology
Brain - metabolism
brain cells
Brain mapping
Brain slice preparation
CD200 antigen
Cells, Cultured
Central nervous system
Cerebrospinal fluid
Cerebrospinal Fluid Proteins
Chromatography, Liquid
CSF
EMBO27
EMBO56
Gene Ontology
Hippocampus
Inflammation
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Membrane proteins
Membranes
Mice
Mice, Inbred C57BL
Microglia
Microglia - metabolism
Nerve Tissue Proteins - cerebrospinal fluid
Nerve Tissue Proteins - metabolism
Nervous system
Neurons
Neurons - metabolism
Oligodendrocytes
Oligodendroglia - metabolism
Peptide mapping
Principal Component Analysis
Protease
Proteinase
Proteins
Proteolysis
Proteome - metabolism
Proteomics
Proteomics - methods
Resource
Secretion
Secretome
secretomics
Serum proteins
Software
Substrates
Sugar
Tandem Mass Spectrometry
β-Site APP-cleaving enzyme 1
title An optimized quantitative proteomics method establishes the cell type‐resolved mouse brain secretome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A37%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20optimized%20quantitative%20proteomics%20method%20establishes%20the%20cell%20type%E2%80%90resolved%20mouse%20brain%20secretome&rft.jtitle=The%20EMBO%20journal&rft.au=T%C3%BCshaus,%20Johanna&rft.date=2020-10-15&rft.volume=39&rft.issue=20&rft.spage=e105693&rft.epage=n/a&rft.pages=e105693-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2020105693&rft_dat=%3Cproquest_pubme%3E2444606714%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451132452&rft_id=info:pmid/32954517&rfr_iscdi=true