Inhibition of class I PI3K enhances chaperone-mediated autophagy

Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, where individual peptides, recognized by a consensus motif, are translocated directly across the lysosomal membrane. CMA regulates the abundance of many disease-related proteins, with causative roles in neoplasia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of cell biology 2020-12, Vol.219 (12)
Hauptverfasser: Endicott, S Joseph, Ziemba, Zachary J, Beckmann, Logan J, Boynton, Dennis N, Miller, Richard A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title The Journal of cell biology
container_volume 219
creator Endicott, S Joseph
Ziemba, Zachary J
Beckmann, Logan J
Boynton, Dennis N
Miller, Richard A
description Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, where individual peptides, recognized by a consensus motif, are translocated directly across the lysosomal membrane. CMA regulates the abundance of many disease-related proteins, with causative roles in neoplasia, neurodegeneration, hepatosteatosis, and other pathologies relevant to human health and aging. At the lysosomal membrane, CMA is inhibited by Akt-dependent phosphorylation of the CMA regulator GFAP. The INS-PI3K-PDPK1 pathway regulates Akt, but its role in CMA is unclear. Here, we report that inhibition of class I PI3K or PDPK1 activates CMA. In contrast, selective inhibition of class III PI3Ks does not activate CMA. Isolated liver lysosomes from mice treated with either of two orally bioavailable class I PI3K inhibitors, pictilisib or buparlisib, display elevated CMA activity, and decreased phosphorylation of lysosomal GFAP, with no change in macroautophagy. The findings of this study represent an important first step in repurposing class I PI3K inhibitors to modulate CMA in vivo.
doi_str_mv 10.1083/jcb.202001031
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7557678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471033207</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-c916bfcf59bb48bbc73873272635e05f807fa28720b78baa3867273cdb2cf5403</originalsourceid><addsrcrecordid>eNpdkb1PwzAQxS0EglIYWVEkFpbA-St2FwSq-KioBAPMlu06JFVqhzhB6n-PUaECphvud-_u3UPoBMMFBkkvl9ZcECAAGCjeQSPMGeQSM9hFIwCC8wkn_AAdxrgEACYY3UcHlAKTuKAjdD3zVW3qvg4-C2VmGx1jNsueZ_Qxc77S3rqY2Uq3rgve5Su3qHXvFpke-tBW-m19hPZK3UR3_F3H6PXu9mX6kM-f7mfTm3luGeZ9bie4MKUt-cQYJo2xgkpBiSAF5Q54KUGUmkhBwAhptKayEERQuzAkDTGgY3S10W0Hk66wzvedblTb1SvdrVXQtfrb8XWl3sKHEpyLQsgkcP4t0IX3wcVerepoXdNo78IQFWEcCiZ58bXr7B-6DEPnk71EifRoSkAkKt9Qtgsxdq7cHoNBfWWjUjZqm03iT3872NI_YdBPLaGI6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471033207</pqid></control><display><type>article</type><title>Inhibition of class I PI3K enhances chaperone-mediated autophagy</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Endicott, S Joseph ; Ziemba, Zachary J ; Beckmann, Logan J ; Boynton, Dennis N ; Miller, Richard A</creator><creatorcontrib>Endicott, S Joseph ; Ziemba, Zachary J ; Beckmann, Logan J ; Boynton, Dennis N ; Miller, Richard A</creatorcontrib><description>Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, where individual peptides, recognized by a consensus motif, are translocated directly across the lysosomal membrane. CMA regulates the abundance of many disease-related proteins, with causative roles in neoplasia, neurodegeneration, hepatosteatosis, and other pathologies relevant to human health and aging. At the lysosomal membrane, CMA is inhibited by Akt-dependent phosphorylation of the CMA regulator GFAP. The INS-PI3K-PDPK1 pathway regulates Akt, but its role in CMA is unclear. Here, we report that inhibition of class I PI3K or PDPK1 activates CMA. In contrast, selective inhibition of class III PI3Ks does not activate CMA. Isolated liver lysosomes from mice treated with either of two orally bioavailable class I PI3K inhibitors, pictilisib or buparlisib, display elevated CMA activity, and decreased phosphorylation of lysosomal GFAP, with no change in macroautophagy. The findings of this study represent an important first step in repurposing class I PI3K inhibitors to modulate CMA in vivo.</description><identifier>ISSN: 0021-9525</identifier><identifier>EISSN: 1540-8140</identifier><identifier>DOI: 10.1083/jcb.202001031</identifier><identifier>PMID: 33048163</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>1-Phosphatidylinositol 3-kinase ; 3-Phosphoinositide-Dependent Protein Kinases - genetics ; 3-Phosphoinositide-Dependent Protein Kinases - metabolism ; Aging ; AKT protein ; Animals ; Autophagy ; Bioavailability ; Cell Death and Autophagy ; Disease ; Glial fibrillary acidic protein ; Glial Fibrillary Acidic Protein - genetics ; Glial Fibrillary Acidic Protein - metabolism ; Humans ; Inhibitors ; Kinases ; Lysosomes ; Lysosomes - genetics ; Lysosomes - metabolism ; Membranes ; Mice ; Molecular Chaperones - genetics ; Molecular Chaperones - metabolism ; Neurodegeneration ; NIH 3T3 Cells ; Peptides ; Phagocytosis ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - metabolism ; Phosphorylation ; Protein Homeostasis ; Proteolysis ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism</subject><ispartof>The Journal of cell biology, 2020-12, Vol.219 (12)</ispartof><rights>2020 Endicott et al.</rights><rights>Copyright Rockefeller University Press Dec 2020</rights><rights>2020 Endicott et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c415t-c916bfcf59bb48bbc73873272635e05f807fa28720b78baa3867273cdb2cf5403</citedby><cites>FETCH-LOGICAL-c415t-c916bfcf59bb48bbc73873272635e05f807fa28720b78baa3867273cdb2cf5403</cites><orcidid>0000-0001-9266-9649 ; 0000-0002-8237-9784</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33048163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Endicott, S Joseph</creatorcontrib><creatorcontrib>Ziemba, Zachary J</creatorcontrib><creatorcontrib>Beckmann, Logan J</creatorcontrib><creatorcontrib>Boynton, Dennis N</creatorcontrib><creatorcontrib>Miller, Richard A</creatorcontrib><title>Inhibition of class I PI3K enhances chaperone-mediated autophagy</title><title>The Journal of cell biology</title><addtitle>J Cell Biol</addtitle><description>Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, where individual peptides, recognized by a consensus motif, are translocated directly across the lysosomal membrane. CMA regulates the abundance of many disease-related proteins, with causative roles in neoplasia, neurodegeneration, hepatosteatosis, and other pathologies relevant to human health and aging. At the lysosomal membrane, CMA is inhibited by Akt-dependent phosphorylation of the CMA regulator GFAP. The INS-PI3K-PDPK1 pathway regulates Akt, but its role in CMA is unclear. Here, we report that inhibition of class I PI3K or PDPK1 activates CMA. In contrast, selective inhibition of class III PI3Ks does not activate CMA. Isolated liver lysosomes from mice treated with either of two orally bioavailable class I PI3K inhibitors, pictilisib or buparlisib, display elevated CMA activity, and decreased phosphorylation of lysosomal GFAP, with no change in macroautophagy. The findings of this study represent an important first step in repurposing class I PI3K inhibitors to modulate CMA in vivo.</description><subject>1-Phosphatidylinositol 3-kinase</subject><subject>3-Phosphoinositide-Dependent Protein Kinases - genetics</subject><subject>3-Phosphoinositide-Dependent Protein Kinases - metabolism</subject><subject>Aging</subject><subject>AKT protein</subject><subject>Animals</subject><subject>Autophagy</subject><subject>Bioavailability</subject><subject>Cell Death and Autophagy</subject><subject>Disease</subject><subject>Glial fibrillary acidic protein</subject><subject>Glial Fibrillary Acidic Protein - genetics</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Kinases</subject><subject>Lysosomes</subject><subject>Lysosomes - genetics</subject><subject>Lysosomes - metabolism</subject><subject>Membranes</subject><subject>Mice</subject><subject>Molecular Chaperones - genetics</subject><subject>Molecular Chaperones - metabolism</subject><subject>Neurodegeneration</subject><subject>NIH 3T3 Cells</subject><subject>Peptides</subject><subject>Phagocytosis</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Homeostasis</subject><subject>Proteolysis</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><issn>0021-9525</issn><issn>1540-8140</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkb1PwzAQxS0EglIYWVEkFpbA-St2FwSq-KioBAPMlu06JFVqhzhB6n-PUaECphvud-_u3UPoBMMFBkkvl9ZcECAAGCjeQSPMGeQSM9hFIwCC8wkn_AAdxrgEACYY3UcHlAKTuKAjdD3zVW3qvg4-C2VmGx1jNsueZ_Qxc77S3rqY2Uq3rgve5Su3qHXvFpke-tBW-m19hPZK3UR3_F3H6PXu9mX6kM-f7mfTm3luGeZ9bie4MKUt-cQYJo2xgkpBiSAF5Q54KUGUmkhBwAhptKayEERQuzAkDTGgY3S10W0Hk66wzvedblTb1SvdrVXQtfrb8XWl3sKHEpyLQsgkcP4t0IX3wcVerepoXdNo78IQFWEcCiZ58bXr7B-6DEPnk71EifRoSkAkKt9Qtgsxdq7cHoNBfWWjUjZqm03iT3872NI_YdBPLaGI6g</recordid><startdate>20201207</startdate><enddate>20201207</enddate><creator>Endicott, S Joseph</creator><creator>Ziemba, Zachary J</creator><creator>Beckmann, Logan J</creator><creator>Boynton, Dennis N</creator><creator>Miller, Richard A</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9266-9649</orcidid><orcidid>https://orcid.org/0000-0002-8237-9784</orcidid></search><sort><creationdate>20201207</creationdate><title>Inhibition of class I PI3K enhances chaperone-mediated autophagy</title><author>Endicott, S Joseph ; Ziemba, Zachary J ; Beckmann, Logan J ; Boynton, Dennis N ; Miller, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-c916bfcf59bb48bbc73873272635e05f807fa28720b78baa3867273cdb2cf5403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>1-Phosphatidylinositol 3-kinase</topic><topic>3-Phosphoinositide-Dependent Protein Kinases - genetics</topic><topic>3-Phosphoinositide-Dependent Protein Kinases - metabolism</topic><topic>Aging</topic><topic>AKT protein</topic><topic>Animals</topic><topic>Autophagy</topic><topic>Bioavailability</topic><topic>Cell Death and Autophagy</topic><topic>Disease</topic><topic>Glial fibrillary acidic protein</topic><topic>Glial Fibrillary Acidic Protein - genetics</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Kinases</topic><topic>Lysosomes</topic><topic>Lysosomes - genetics</topic><topic>Lysosomes - metabolism</topic><topic>Membranes</topic><topic>Mice</topic><topic>Molecular Chaperones - genetics</topic><topic>Molecular Chaperones - metabolism</topic><topic>Neurodegeneration</topic><topic>NIH 3T3 Cells</topic><topic>Peptides</topic><topic>Phagocytosis</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Homeostasis</topic><topic>Proteolysis</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Endicott, S Joseph</creatorcontrib><creatorcontrib>Ziemba, Zachary J</creatorcontrib><creatorcontrib>Beckmann, Logan J</creatorcontrib><creatorcontrib>Boynton, Dennis N</creatorcontrib><creatorcontrib>Miller, Richard A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Endicott, S Joseph</au><au>Ziemba, Zachary J</au><au>Beckmann, Logan J</au><au>Boynton, Dennis N</au><au>Miller, Richard A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of class I PI3K enhances chaperone-mediated autophagy</atitle><jtitle>The Journal of cell biology</jtitle><addtitle>J Cell Biol</addtitle><date>2020-12-07</date><risdate>2020</risdate><volume>219</volume><issue>12</issue><issn>0021-9525</issn><eissn>1540-8140</eissn><abstract>Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis, where individual peptides, recognized by a consensus motif, are translocated directly across the lysosomal membrane. CMA regulates the abundance of many disease-related proteins, with causative roles in neoplasia, neurodegeneration, hepatosteatosis, and other pathologies relevant to human health and aging. At the lysosomal membrane, CMA is inhibited by Akt-dependent phosphorylation of the CMA regulator GFAP. The INS-PI3K-PDPK1 pathway regulates Akt, but its role in CMA is unclear. Here, we report that inhibition of class I PI3K or PDPK1 activates CMA. In contrast, selective inhibition of class III PI3Ks does not activate CMA. Isolated liver lysosomes from mice treated with either of two orally bioavailable class I PI3K inhibitors, pictilisib or buparlisib, display elevated CMA activity, and decreased phosphorylation of lysosomal GFAP, with no change in macroautophagy. The findings of this study represent an important first step in repurposing class I PI3K inhibitors to modulate CMA in vivo.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>33048163</pmid><doi>10.1083/jcb.202001031</doi><orcidid>https://orcid.org/0000-0001-9266-9649</orcidid><orcidid>https://orcid.org/0000-0002-8237-9784</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9525
ispartof The Journal of cell biology, 2020-12, Vol.219 (12)
issn 0021-9525
1540-8140
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7557678
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects 1-Phosphatidylinositol 3-kinase
3-Phosphoinositide-Dependent Protein Kinases - genetics
3-Phosphoinositide-Dependent Protein Kinases - metabolism
Aging
AKT protein
Animals
Autophagy
Bioavailability
Cell Death and Autophagy
Disease
Glial fibrillary acidic protein
Glial Fibrillary Acidic Protein - genetics
Glial Fibrillary Acidic Protein - metabolism
Humans
Inhibitors
Kinases
Lysosomes
Lysosomes - genetics
Lysosomes - metabolism
Membranes
Mice
Molecular Chaperones - genetics
Molecular Chaperones - metabolism
Neurodegeneration
NIH 3T3 Cells
Peptides
Phagocytosis
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Protein Homeostasis
Proteolysis
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
title Inhibition of class I PI3K enhances chaperone-mediated autophagy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T22%3A29%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20class%20I%20PI3K%20enhances%20chaperone-mediated%20autophagy&rft.jtitle=The%20Journal%20of%20cell%20biology&rft.au=Endicott,%20S%20Joseph&rft.date=2020-12-07&rft.volume=219&rft.issue=12&rft.issn=0021-9525&rft.eissn=1540-8140&rft_id=info:doi/10.1083/jcb.202001031&rft_dat=%3Cproquest_pubme%3E2471033207%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471033207&rft_id=info:pmid/33048163&rfr_iscdi=true