Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process

Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-09, Vol.13 (18), p.3928
Hauptverfasser: Chugunov, Svyatoslav, Adams, Nikolaus A., Akhatov, Iskander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 18
container_start_page 3928
container_title Materials
container_volume 13
creator Chugunov, Svyatoslav
Adams, Nikolaus A.
Akhatov, Iskander
description Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.
doi_str_mv 10.3390/ma13183928
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7557533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441284693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2988-b1b92abf06fa3320dbbd7b580e9364a580ddce708eaaa296d88037e5fd513b203</originalsourceid><addsrcrecordid>eNpdkdtKxDAQhoMoKqs3PkHBGxGqSaaH5EZY1_UAu6io1yFpUo20jSbNgm9vq-JpbmaY_-NnDgjtEXwEwPFxKwkQBpyyNbRNOC9SwrNs_Ve9hXZDeMZDwEBSvom2gDLOM15so9v5yjWxt65LXJ3cLabpqQxGJ9OGXkOytJV3ofex6qM3yVn0tntMplrb3q5MspRdrOWoje0b7yoTwg7aqGUTzO5XnqCH8_n97DJdXF9czaaLtKKcsVQRxalUNS5qCUCxVkqXKmfYcCgyORRaV6bEzEgpKS80YxhKk9c6J6Aohgk6-fR9iao1A9v1XjbixdtW-jfhpBV_lc4-iUe3EmWelznAYHDwZeDdazShF60NlWka2RkXg6BZRijLCj6i-__QZxd9N6z3QQEjpGADdfhJjUcL3tTfwxAsxmeJn2fBOxbjhSY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441381168</pqid></control><display><type>article</type><title>Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chugunov, Svyatoslav ; Adams, Nikolaus A. ; Akhatov, Iskander</creator><creatorcontrib>Chugunov, Svyatoslav ; Adams, Nikolaus A. ; Akhatov, Iskander</creatorcontrib><description>Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13183928</identifier><identifier>PMID: 32899496</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; Additive manufacturing ; Aluminum oxide ; Ceramics ; Computed tomography ; Computer simulation ; Data acquisition ; Evolution ; Ion beams ; Laboratories ; Manufacturers ; Mathematical models ; Microstructure ; Particle size ; Porosity ; Printers (data processing) ; Scanning electron microscopy ; Sintering ; Sintering (powder metallurgy) ; Three dimensional models ; Three dimensional printing ; Tomography ; Workflow</subject><ispartof>Materials, 2020-09, Vol.13 (18), p.3928</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2988-b1b92abf06fa3320dbbd7b580e9364a580ddce708eaaa296d88037e5fd513b203</citedby><cites>FETCH-LOGICAL-c2988-b1b92abf06fa3320dbbd7b580e9364a580ddce708eaaa296d88037e5fd513b203</cites><orcidid>0000-0003-4772-2302 ; 0000-0002-0670-8152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557533/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557533/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids></links><search><creatorcontrib>Chugunov, Svyatoslav</creatorcontrib><creatorcontrib>Adams, Nikolaus A.</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><title>Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process</title><title>Materials</title><description>Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Aluminum oxide</subject><subject>Ceramics</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Data acquisition</subject><subject>Evolution</subject><subject>Ion beams</subject><subject>Laboratories</subject><subject>Manufacturers</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Particle size</subject><subject>Porosity</subject><subject>Printers (data processing)</subject><subject>Scanning electron microscopy</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><subject>Tomography</subject><subject>Workflow</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdtKxDAQhoMoKqs3PkHBGxGqSaaH5EZY1_UAu6io1yFpUo20jSbNgm9vq-JpbmaY_-NnDgjtEXwEwPFxKwkQBpyyNbRNOC9SwrNs_Ve9hXZDeMZDwEBSvom2gDLOM15so9v5yjWxt65LXJ3cLabpqQxGJ9OGXkOytJV3ofex6qM3yVn0tntMplrb3q5MspRdrOWoje0b7yoTwg7aqGUTzO5XnqCH8_n97DJdXF9czaaLtKKcsVQRxalUNS5qCUCxVkqXKmfYcCgyORRaV6bEzEgpKS80YxhKk9c6J6Aohgk6-fR9iao1A9v1XjbixdtW-jfhpBV_lc4-iUe3EmWelznAYHDwZeDdazShF60NlWka2RkXg6BZRijLCj6i-__QZxd9N6z3QQEjpGADdfhJjUcL3tTfwxAsxmeJn2fBOxbjhSY</recordid><startdate>20200905</startdate><enddate>20200905</enddate><creator>Chugunov, Svyatoslav</creator><creator>Adams, Nikolaus A.</creator><creator>Akhatov, Iskander</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4772-2302</orcidid><orcidid>https://orcid.org/0000-0002-0670-8152</orcidid></search><sort><creationdate>20200905</creationdate><title>Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process</title><author>Chugunov, Svyatoslav ; Adams, Nikolaus A. ; Akhatov, Iskander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2988-b1b92abf06fa3320dbbd7b580e9364a580ddce708eaaa296d88037e5fd513b203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Aluminum oxide</topic><topic>Ceramics</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Data acquisition</topic><topic>Evolution</topic><topic>Ion beams</topic><topic>Laboratories</topic><topic>Manufacturers</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Particle size</topic><topic>Porosity</topic><topic>Printers (data processing)</topic><topic>Scanning electron microscopy</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><topic>Tomography</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chugunov, Svyatoslav</creatorcontrib><creatorcontrib>Adams, Nikolaus A.</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chugunov, Svyatoslav</au><au>Adams, Nikolaus A.</au><au>Akhatov, Iskander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process</atitle><jtitle>Materials</jtitle><date>2020-09-05</date><risdate>2020</risdate><volume>13</volume><issue>18</issue><spage>3928</spage><pages>3928-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32899496</pmid><doi>10.3390/ma13183928</doi><orcidid>https://orcid.org/0000-0003-4772-2302</orcidid><orcidid>https://orcid.org/0000-0002-0670-8152</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-09, Vol.13 (18), p.3928
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7557533
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects 3-D printers
Additive manufacturing
Aluminum oxide
Ceramics
Computed tomography
Computer simulation
Data acquisition
Evolution
Ion beams
Laboratories
Manufacturers
Mathematical models
Microstructure
Particle size
Porosity
Printers (data processing)
Scanning electron microscopy
Sintering
Sintering (powder metallurgy)
Three dimensional models
Three dimensional printing
Tomography
Workflow
title Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20SLA-Based%20Al2O3%20Microstructure%20During%20Additive%20Manufacturing%20Process&rft.jtitle=Materials&rft.au=Chugunov,%20Svyatoslav&rft.date=2020-09-05&rft.volume=13&rft.issue=18&rft.spage=3928&rft.pages=3928-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13183928&rft_dat=%3Cproquest_pubme%3E2441284693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441381168&rft_id=info:pmid/32899496&rfr_iscdi=true