Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process
Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and ana...
Gespeichert in:
Veröffentlicht in: | Materials 2020-09, Vol.13 (18), p.3928 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 18 |
container_start_page | 3928 |
container_title | Materials |
container_volume | 13 |
creator | Chugunov, Svyatoslav Adams, Nikolaus A. Akhatov, Iskander |
description | Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project. |
doi_str_mv | 10.3390/ma13183928 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7557533</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441284693</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2988-b1b92abf06fa3320dbbd7b580e9364a580ddce708eaaa296d88037e5fd513b203</originalsourceid><addsrcrecordid>eNpdkdtKxDAQhoMoKqs3PkHBGxGqSaaH5EZY1_UAu6io1yFpUo20jSbNgm9vq-JpbmaY_-NnDgjtEXwEwPFxKwkQBpyyNbRNOC9SwrNs_Ve9hXZDeMZDwEBSvom2gDLOM15so9v5yjWxt65LXJ3cLabpqQxGJ9OGXkOytJV3ofex6qM3yVn0tntMplrb3q5MspRdrOWoje0b7yoTwg7aqGUTzO5XnqCH8_n97DJdXF9czaaLtKKcsVQRxalUNS5qCUCxVkqXKmfYcCgyORRaV6bEzEgpKS80YxhKk9c6J6Aohgk6-fR9iao1A9v1XjbixdtW-jfhpBV_lc4-iUe3EmWelznAYHDwZeDdazShF60NlWka2RkXg6BZRijLCj6i-__QZxd9N6z3QQEjpGADdfhJjUcL3tTfwxAsxmeJn2fBOxbjhSY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441381168</pqid></control><display><type>article</type><title>Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chugunov, Svyatoslav ; Adams, Nikolaus A. ; Akhatov, Iskander</creator><creatorcontrib>Chugunov, Svyatoslav ; Adams, Nikolaus A. ; Akhatov, Iskander</creatorcontrib><description>Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13183928</identifier><identifier>PMID: 32899496</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; Additive manufacturing ; Aluminum oxide ; Ceramics ; Computed tomography ; Computer simulation ; Data acquisition ; Evolution ; Ion beams ; Laboratories ; Manufacturers ; Mathematical models ; Microstructure ; Particle size ; Porosity ; Printers (data processing) ; Scanning electron microscopy ; Sintering ; Sintering (powder metallurgy) ; Three dimensional models ; Three dimensional printing ; Tomography ; Workflow</subject><ispartof>Materials, 2020-09, Vol.13 (18), p.3928</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2988-b1b92abf06fa3320dbbd7b580e9364a580ddce708eaaa296d88037e5fd513b203</citedby><cites>FETCH-LOGICAL-c2988-b1b92abf06fa3320dbbd7b580e9364a580ddce708eaaa296d88037e5fd513b203</cites><orcidid>0000-0003-4772-2302 ; 0000-0002-0670-8152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557533/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7557533/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,53798,53800</link.rule.ids></links><search><creatorcontrib>Chugunov, Svyatoslav</creatorcontrib><creatorcontrib>Adams, Nikolaus A.</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><title>Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process</title><title>Materials</title><description>Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Aluminum oxide</subject><subject>Ceramics</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Data acquisition</subject><subject>Evolution</subject><subject>Ion beams</subject><subject>Laboratories</subject><subject>Manufacturers</subject><subject>Mathematical models</subject><subject>Microstructure</subject><subject>Particle size</subject><subject>Porosity</subject><subject>Printers (data processing)</subject><subject>Scanning electron microscopy</subject><subject>Sintering</subject><subject>Sintering (powder metallurgy)</subject><subject>Three dimensional models</subject><subject>Three dimensional printing</subject><subject>Tomography</subject><subject>Workflow</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkdtKxDAQhoMoKqs3PkHBGxGqSaaH5EZY1_UAu6io1yFpUo20jSbNgm9vq-JpbmaY_-NnDgjtEXwEwPFxKwkQBpyyNbRNOC9SwrNs_Ve9hXZDeMZDwEBSvom2gDLOM15so9v5yjWxt65LXJ3cLabpqQxGJ9OGXkOytJV3ofex6qM3yVn0tntMplrb3q5MspRdrOWoje0b7yoTwg7aqGUTzO5XnqCH8_n97DJdXF9czaaLtKKcsVQRxalUNS5qCUCxVkqXKmfYcCgyORRaV6bEzEgpKS80YxhKk9c6J6Aohgk6-fR9iao1A9v1XjbixdtW-jfhpBV_lc4-iUe3EmWelznAYHDwZeDdazShF60NlWka2RkXg6BZRijLCj6i-__QZxd9N6z3QQEjpGADdfhJjUcL3tTfwxAsxmeJn2fBOxbjhSY</recordid><startdate>20200905</startdate><enddate>20200905</enddate><creator>Chugunov, Svyatoslav</creator><creator>Adams, Nikolaus A.</creator><creator>Akhatov, Iskander</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4772-2302</orcidid><orcidid>https://orcid.org/0000-0002-0670-8152</orcidid></search><sort><creationdate>20200905</creationdate><title>Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process</title><author>Chugunov, Svyatoslav ; Adams, Nikolaus A. ; Akhatov, Iskander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2988-b1b92abf06fa3320dbbd7b580e9364a580ddce708eaaa296d88037e5fd513b203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Aluminum oxide</topic><topic>Ceramics</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Data acquisition</topic><topic>Evolution</topic><topic>Ion beams</topic><topic>Laboratories</topic><topic>Manufacturers</topic><topic>Mathematical models</topic><topic>Microstructure</topic><topic>Particle size</topic><topic>Porosity</topic><topic>Printers (data processing)</topic><topic>Scanning electron microscopy</topic><topic>Sintering</topic><topic>Sintering (powder metallurgy)</topic><topic>Three dimensional models</topic><topic>Three dimensional printing</topic><topic>Tomography</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chugunov, Svyatoslav</creatorcontrib><creatorcontrib>Adams, Nikolaus A.</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chugunov, Svyatoslav</au><au>Adams, Nikolaus A.</au><au>Akhatov, Iskander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process</atitle><jtitle>Materials</jtitle><date>2020-09-05</date><risdate>2020</risdate><volume>13</volume><issue>18</issue><spage>3928</spage><pages>3928-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Evolution of additively manufactured (AM) ceramics’ microstructure between manufacturing stages is a hardly explored topic. These data are of high demand for advanced numerical modeling. In this work, 3D microstructural models of Al2O3 greenbody, brownbody and sintered material are presented and analyzed, for ceramic samples manufactured with SLA-based AM workflow, using a commercially available ceramic paste and 3D printer. The novel data, acquired at the micro- and mesoscale, using Computed Tomography (CT), Scanning Electron Microscopy (SEM) and Focused Ion-Beam SEM (FIB/SEM) techniques, allowed a deep insight into additive ceramics characteristics. We demonstrated the spatial 3D distribution of ceramic particles, an organic binder and pores at every stage of AM workflow. The porosity of greenbody samples (1.6%), brownbody samples (37.3%) and sintered material (4.9%) are analyzed. Pore distribution and possible originating mechanisms are discussed. The location and shape of pores and ceramic particles are indicative of specific physical processes driving the ceramics manufacturing. We will use the presented microstructural 3D models as input and verification data for advanced numerical simulations developed in the project.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32899496</pmid><doi>10.3390/ma13183928</doi><orcidid>https://orcid.org/0000-0003-4772-2302</orcidid><orcidid>https://orcid.org/0000-0002-0670-8152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-09, Vol.13 (18), p.3928 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7557533 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | 3-D printers Additive manufacturing Aluminum oxide Ceramics Computed tomography Computer simulation Data acquisition Evolution Ion beams Laboratories Manufacturers Mathematical models Microstructure Particle size Porosity Printers (data processing) Scanning electron microscopy Sintering Sintering (powder metallurgy) Three dimensional models Three dimensional printing Tomography Workflow |
title | Evolution of SLA-Based Al2O3 Microstructure During Additive Manufacturing Process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A17%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20SLA-Based%20Al2O3%20Microstructure%20During%20Additive%20Manufacturing%20Process&rft.jtitle=Materials&rft.au=Chugunov,%20Svyatoslav&rft.date=2020-09-05&rft.volume=13&rft.issue=18&rft.spage=3928&rft.pages=3928-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13183928&rft_dat=%3Cproquest_pubme%3E2441284693%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441381168&rft_id=info:pmid/32899496&rfr_iscdi=true |