Unraveling the SARS-CoV‑2 Main Protease Mechanism Using Multiscale Methods

We present a detailed theoretical analysis of the reaction mechanism of proteolysis catalyzed by the main protease of SARS-CoV-2. Using multiscale simulation methods, we have characterized the interactions established by a peptidic substrate in the active site, and then we have explored the free ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2020-11, Vol.10 (21), p.12544-12554
Hauptverfasser: Ramos-Guzmán, Carlos A, Ruiz-Pernía, J. Javier, Tuñón, Iñaki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12554
container_issue 21
container_start_page 12544
container_title ACS catalysis
container_volume 10
creator Ramos-Guzmán, Carlos A
Ruiz-Pernía, J. Javier
Tuñón, Iñaki
description We present a detailed theoretical analysis of the reaction mechanism of proteolysis catalyzed by the main protease of SARS-CoV-2. Using multiscale simulation methods, we have characterized the interactions established by a peptidic substrate in the active site, and then we have explored the free energy landscape associated with the acylation and deacylation steps of the proteolysis reaction, characterizing the transition states of the process. Our mechanistic proposals can explain most of the experimental observations made on the highly similar ortholog protease of SARS-CoV. We point to some key interactions that may facilitate the acylation process and thus can be crucial in the design of more specific and efficient inhibitors of the main protease activity. In particular, from our results, the P1′ residue can be a key factor to improve the thermodynamics and kinetics of the inhibition process.
doi_str_mv 10.1021/acscatal.0c03420
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7556163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2547530401</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-57430ff9adaf9d02ccf634cce138f2dafb9032428345055340f2c9c0f43dd5b13</originalsourceid><addsrcrecordid>eNp1UctOwzAQtBCIotI7xxw5kLJ-5XFBqipeUisQpVwt17GbVGlc7KQSN36BX-RLSNSC4MBevNqZnbE9CJ1hGGIg-FIqr2QtyyEooIzAATohmPOQM8oPf_U9NPB-BW0xHiUxHKMeZTglkKQnaDKvnNzqsqiWQZ3rYDZ6moVj-_L5_kGCqSyq4NHZWkuvg6lWuawKvw7mvqNPm7Iu2iuUHVTnNvOn6MjI0uvB_uyj-c318_gunDzc3o9Hk1CyOKpDHjMKxqQykybNgChlIsqU0pgmhrTDRQqUMJJQxoFzysAQlSowjGYZX2DaR1c73U2zWOtM6ap2shQbV6ylexNWFuIvUhW5WNqtiDmPcERbgfO9gLOvjfa1WLcv0WUpK20bLwhnMafAoPOCHVU5673T5scGg-hyEN85iH0O7crFbqVFxMo2rmo_43_6F_P9i18</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2547530401</pqid></control><display><type>article</type><title>Unraveling the SARS-CoV‑2 Main Protease Mechanism Using Multiscale Methods</title><source>ACS Publications</source><creator>Ramos-Guzmán, Carlos A ; Ruiz-Pernía, J. Javier ; Tuñón, Iñaki</creator><creatorcontrib>Ramos-Guzmán, Carlos A ; Ruiz-Pernía, J. Javier ; Tuñón, Iñaki</creatorcontrib><description>We present a detailed theoretical analysis of the reaction mechanism of proteolysis catalyzed by the main protease of SARS-CoV-2. Using multiscale simulation methods, we have characterized the interactions established by a peptidic substrate in the active site, and then we have explored the free energy landscape associated with the acylation and deacylation steps of the proteolysis reaction, characterizing the transition states of the process. Our mechanistic proposals can explain most of the experimental observations made on the highly similar ortholog protease of SARS-CoV. We point to some key interactions that may facilitate the acylation process and thus can be crucial in the design of more specific and efficient inhibitors of the main protease activity. In particular, from our results, the P1′ residue can be a key factor to improve the thermodynamics and kinetics of the inhibition process.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.0c03420</identifier><identifier>PMID: 34192089</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS catalysis, 2020-11, Vol.10 (21), p.12544-12554</ispartof><rights>2020 American Chemical Society</rights><rights>2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-57430ff9adaf9d02ccf634cce138f2dafb9032428345055340f2c9c0f43dd5b13</citedby><cites>FETCH-LOGICAL-a476t-57430ff9adaf9d02ccf634cce138f2dafb9032428345055340f2c9c0f43dd5b13</cites><orcidid>0000-0002-4640-0419 ; 0000-0002-6995-1838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.0c03420$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.0c03420$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Ramos-Guzmán, Carlos A</creatorcontrib><creatorcontrib>Ruiz-Pernía, J. Javier</creatorcontrib><creatorcontrib>Tuñón, Iñaki</creatorcontrib><title>Unraveling the SARS-CoV‑2 Main Protease Mechanism Using Multiscale Methods</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>We present a detailed theoretical analysis of the reaction mechanism of proteolysis catalyzed by the main protease of SARS-CoV-2. Using multiscale simulation methods, we have characterized the interactions established by a peptidic substrate in the active site, and then we have explored the free energy landscape associated with the acylation and deacylation steps of the proteolysis reaction, characterizing the transition states of the process. Our mechanistic proposals can explain most of the experimental observations made on the highly similar ortholog protease of SARS-CoV. We point to some key interactions that may facilitate the acylation process and thus can be crucial in the design of more specific and efficient inhibitors of the main protease activity. In particular, from our results, the P1′ residue can be a key factor to improve the thermodynamics and kinetics of the inhibition process.</description><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1UctOwzAQtBCIotI7xxw5kLJ-5XFBqipeUisQpVwt17GbVGlc7KQSN36BX-RLSNSC4MBevNqZnbE9CJ1hGGIg-FIqr2QtyyEooIzAATohmPOQM8oPf_U9NPB-BW0xHiUxHKMeZTglkKQnaDKvnNzqsqiWQZ3rYDZ6moVj-_L5_kGCqSyq4NHZWkuvg6lWuawKvw7mvqNPm7Iu2iuUHVTnNvOn6MjI0uvB_uyj-c318_gunDzc3o9Hk1CyOKpDHjMKxqQykybNgChlIsqU0pgmhrTDRQqUMJJQxoFzysAQlSowjGYZX2DaR1c73U2zWOtM6ap2shQbV6ylexNWFuIvUhW5WNqtiDmPcERbgfO9gLOvjfa1WLcv0WUpK20bLwhnMafAoPOCHVU5673T5scGg-hyEN85iH0O7crFbqVFxMo2rmo_43_6F_P9i18</recordid><startdate>20201106</startdate><enddate>20201106</enddate><creator>Ramos-Guzmán, Carlos A</creator><creator>Ruiz-Pernía, J. Javier</creator><creator>Tuñón, Iñaki</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4640-0419</orcidid><orcidid>https://orcid.org/0000-0002-6995-1838</orcidid></search><sort><creationdate>20201106</creationdate><title>Unraveling the SARS-CoV‑2 Main Protease Mechanism Using Multiscale Methods</title><author>Ramos-Guzmán, Carlos A ; Ruiz-Pernía, J. Javier ; Tuñón, Iñaki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-57430ff9adaf9d02ccf634cce138f2dafb9032428345055340f2c9c0f43dd5b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos-Guzmán, Carlos A</creatorcontrib><creatorcontrib>Ruiz-Pernía, J. Javier</creatorcontrib><creatorcontrib>Tuñón, Iñaki</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos-Guzmán, Carlos A</au><au>Ruiz-Pernía, J. Javier</au><au>Tuñón, Iñaki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the SARS-CoV‑2 Main Protease Mechanism Using Multiscale Methods</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2020-11-06</date><risdate>2020</risdate><volume>10</volume><issue>21</issue><spage>12544</spage><epage>12554</epage><pages>12544-12554</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>We present a detailed theoretical analysis of the reaction mechanism of proteolysis catalyzed by the main protease of SARS-CoV-2. Using multiscale simulation methods, we have characterized the interactions established by a peptidic substrate in the active site, and then we have explored the free energy landscape associated with the acylation and deacylation steps of the proteolysis reaction, characterizing the transition states of the process. Our mechanistic proposals can explain most of the experimental observations made on the highly similar ortholog protease of SARS-CoV. We point to some key interactions that may facilitate the acylation process and thus can be crucial in the design of more specific and efficient inhibitors of the main protease activity. In particular, from our results, the P1′ residue can be a key factor to improve the thermodynamics and kinetics of the inhibition process.</abstract><pub>American Chemical Society</pub><pmid>34192089</pmid><doi>10.1021/acscatal.0c03420</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4640-0419</orcidid><orcidid>https://orcid.org/0000-0002-6995-1838</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2020-11, Vol.10 (21), p.12544-12554
issn 2155-5435
2155-5435
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7556163
source ACS Publications
title Unraveling the SARS-CoV‑2 Main Protease Mechanism Using Multiscale Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20SARS-CoV%E2%80%912%20Main%20Protease%20Mechanism%20Using%20Multiscale%20Methods&rft.jtitle=ACS%20catalysis&rft.au=Ramos-Guzma%CC%81n,%20Carlos%20A&rft.date=2020-11-06&rft.volume=10&rft.issue=21&rft.spage=12544&rft.epage=12554&rft.pages=12544-12554&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.0c03420&rft_dat=%3Cproquest_pubme%3E2547530401%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2547530401&rft_id=info:pmid/34192089&rfr_iscdi=true