Interaction of TPPP3 with VDAC1 Promotes Endothelial Injury through Activation of Reactive Oxygen Species

Endothelial injury plays a critical role in the pathogenesis of cardiovascular disorders and metabolic-associated vascular complications which are the leading cause of death worldwide. However, the mechanism underlying endothelial dysfunction is not completely understood. The study is aimed at inves...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oxidative medicine and cellular longevity 2020, Vol.2020 (2020), p.1-13
Hauptverfasser: Hu, Renming, Li, Rumei, Huang, Jinya, Zhou, Wenbai, Nan, Wu, Li, Yintao, Liu, Naijia, Zhou, Linuo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2020
container_start_page 1
container_title Oxidative medicine and cellular longevity
container_volume 2020
creator Hu, Renming
Li, Rumei
Huang, Jinya
Zhou, Wenbai
Nan, Wu
Li, Yintao
Liu, Naijia
Zhou, Linuo
description Endothelial injury plays a critical role in the pathogenesis of cardiovascular disorders and metabolic-associated vascular complications which are the leading cause of death worldwide. However, the mechanism underlying endothelial dysfunction is not completely understood. The study is aimed at investigating the role of tubulin polymerization-promoting protein family member 3 (TPPP3) in palmitic acid- (PA-) induced endothelial injury. The effect of TPPP3 on human umbilical vein endothelial cells (HUVECs) was determined by evaluating apoptosis, tube formation, and reactive oxygen species (ROS) production. TPPP3 silencing inhibited PA overload-induced apoptosis and production of ROS, along with the alteration of apoptosis-related key proteins such as BCL-2 and Bax. Mechanically, voltage-dependent anion channel 1 (VDAC1) was identified as a novel functional binding partner of TPPP3, and TPPP3 promoted VDAC1 protein stability and its activity. Further studies indicated that TPPP3 could promote apoptosis, ROS production, tube formation, and proapoptotic protein expression and reduce antiapoptotic protein expression through increasing VDAC1 expression under mildly elevated levels of PA. Collectively, these results demonstrated that TPPP3 could promote PA-induced oxidative damage in HUVECs via a VDAC1-dependent pathway, suggesting that TPPP3 might be considered as a potential therapeutic target in vascular disease.
doi_str_mv 10.1155/2020/5950195
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7556057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A697088258</galeid><sourcerecordid>A697088258</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-cae8d742fc5ab8b4fadd389f6292edf223db7a634350af713db685e399e6ba103</originalsourceid><addsrcrecordid>eNqNkc9v0zAUxy3ExMbgxhlZ4oIE3fwjTuILUlUGVJq0CgZXy0meG1epXeyko_89jtp1bCdOfpY_7_P89EXoDSUXlApxyQgjl0IKQqV4hs6ozNiESJk9P9aEnKKXMa4IyTnL6At0yjkpmaTkDNm56yHourfeYW_w7WKx4PjO9i3-9Xk6o3gR_Nr3EPGVa3zfQmd1h-duNYQd7tvgh2WLp6l9q-8V32HUbQHf_NktweEfG6gtxFfoxOguwuvDeY5-frm6nX2bXN98nc-m15M6k7Kf1BrKpsiYqYWuyiozuml4KU3OJIPGMMabqtA5z7gg2hQ0XfNSAJcS8kpTws_Rp713M1RraGpwfdCd2gS71mGnvLbq8YuzrVr6rSqEyIkokuD9QRD87wFir9Y21tB12oEfomKZYLKkhNKEvnuCrvwQXFpvpGgheJ4VD9RSd6CsMz7NrUepmuayIGXJRJmoj3uqDj7GAOb4ZUrUmLQak1aHpBP-9t81j_B9tAn4sAda6xp9Z_9TB4kBox9oRlIunP8FwDi56w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2451753647</pqid></control><display><type>article</type><title>Interaction of TPPP3 with VDAC1 Promotes Endothelial Injury through Activation of Reactive Oxygen Species</title><source>MEDLINE</source><source>Wiley Online Library Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Hu, Renming ; Li, Rumei ; Huang, Jinya ; Zhou, Wenbai ; Nan, Wu ; Li, Yintao ; Liu, Naijia ; Zhou, Linuo</creator><contributor>de Oliveira, Marcos R. ; Marcos R de Oliveira</contributor><creatorcontrib>Hu, Renming ; Li, Rumei ; Huang, Jinya ; Zhou, Wenbai ; Nan, Wu ; Li, Yintao ; Liu, Naijia ; Zhou, Linuo ; de Oliveira, Marcos R. ; Marcos R de Oliveira</creatorcontrib><description>Endothelial injury plays a critical role in the pathogenesis of cardiovascular disorders and metabolic-associated vascular complications which are the leading cause of death worldwide. However, the mechanism underlying endothelial dysfunction is not completely understood. The study is aimed at investigating the role of tubulin polymerization-promoting protein family member 3 (TPPP3) in palmitic acid- (PA-) induced endothelial injury. The effect of TPPP3 on human umbilical vein endothelial cells (HUVECs) was determined by evaluating apoptosis, tube formation, and reactive oxygen species (ROS) production. TPPP3 silencing inhibited PA overload-induced apoptosis and production of ROS, along with the alteration of apoptosis-related key proteins such as BCL-2 and Bax. Mechanically, voltage-dependent anion channel 1 (VDAC1) was identified as a novel functional binding partner of TPPP3, and TPPP3 promoted VDAC1 protein stability and its activity. Further studies indicated that TPPP3 could promote apoptosis, ROS production, tube formation, and proapoptotic protein expression and reduce antiapoptotic protein expression through increasing VDAC1 expression under mildly elevated levels of PA. Collectively, these results demonstrated that TPPP3 could promote PA-induced oxidative damage in HUVECs via a VDAC1-dependent pathway, suggesting that TPPP3 might be considered as a potential therapeutic target in vascular disease.</description><identifier>ISSN: 1942-0900</identifier><identifier>ISSN: 1942-0994</identifier><identifier>EISSN: 1942-0994</identifier><identifier>DOI: 10.1155/2020/5950195</identifier><identifier>PMID: 33082910</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Antibodies ; Apoptosis ; Apoptosis - drug effects ; bcl-2-Associated X Protein - metabolism ; Blood circulation disorders ; Cytoskeletal Proteins - antagonists &amp; inhibitors ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - metabolism ; Endothelium ; Experiments ; Flow cytometry ; Health aspects ; Human Umbilical Vein Endothelial Cells ; Humans ; Injuries ; Metabolism ; Neovascularization, Physiologic - drug effects ; Oxidative stress ; Oxidative Stress - drug effects ; Palmitic Acid - pharmacology ; Polymerization ; Proteins ; Proto-Oncogene Proteins c-bcl-2 - metabolism ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; Saturated fatty acids ; Statistical analysis ; Up-Regulation - drug effects ; Voltage-Dependent Anion Channel 1 - antagonists &amp; inhibitors ; Voltage-Dependent Anion Channel 1 - genetics ; Voltage-Dependent Anion Channel 1 - metabolism</subject><ispartof>Oxidative medicine and cellular longevity, 2020, Vol.2020 (2020), p.1-13</ispartof><rights>Copyright © 2020 Naijia Liu et al.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2020 Naijia Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2020 Naijia Liu et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-cae8d742fc5ab8b4fadd389f6292edf223db7a634350af713db685e399e6ba103</citedby><cites>FETCH-LOGICAL-c499t-cae8d742fc5ab8b4fadd389f6292edf223db7a634350af713db685e399e6ba103</cites><orcidid>0000-0002-8558-1347 ; 0000-0002-7742-2602</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556057/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7556057/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,4010,27900,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33082910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>de Oliveira, Marcos R.</contributor><contributor>Marcos R de Oliveira</contributor><creatorcontrib>Hu, Renming</creatorcontrib><creatorcontrib>Li, Rumei</creatorcontrib><creatorcontrib>Huang, Jinya</creatorcontrib><creatorcontrib>Zhou, Wenbai</creatorcontrib><creatorcontrib>Nan, Wu</creatorcontrib><creatorcontrib>Li, Yintao</creatorcontrib><creatorcontrib>Liu, Naijia</creatorcontrib><creatorcontrib>Zhou, Linuo</creatorcontrib><title>Interaction of TPPP3 with VDAC1 Promotes Endothelial Injury through Activation of Reactive Oxygen Species</title><title>Oxidative medicine and cellular longevity</title><addtitle>Oxid Med Cell Longev</addtitle><description>Endothelial injury plays a critical role in the pathogenesis of cardiovascular disorders and metabolic-associated vascular complications which are the leading cause of death worldwide. However, the mechanism underlying endothelial dysfunction is not completely understood. The study is aimed at investigating the role of tubulin polymerization-promoting protein family member 3 (TPPP3) in palmitic acid- (PA-) induced endothelial injury. The effect of TPPP3 on human umbilical vein endothelial cells (HUVECs) was determined by evaluating apoptosis, tube formation, and reactive oxygen species (ROS) production. TPPP3 silencing inhibited PA overload-induced apoptosis and production of ROS, along with the alteration of apoptosis-related key proteins such as BCL-2 and Bax. Mechanically, voltage-dependent anion channel 1 (VDAC1) was identified as a novel functional binding partner of TPPP3, and TPPP3 promoted VDAC1 protein stability and its activity. Further studies indicated that TPPP3 could promote apoptosis, ROS production, tube formation, and proapoptotic protein expression and reduce antiapoptotic protein expression through increasing VDAC1 expression under mildly elevated levels of PA. Collectively, these results demonstrated that TPPP3 could promote PA-induced oxidative damage in HUVECs via a VDAC1-dependent pathway, suggesting that TPPP3 might be considered as a potential therapeutic target in vascular disease.</description><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Apoptosis - drug effects</subject><subject>bcl-2-Associated X Protein - metabolism</subject><subject>Blood circulation disorders</subject><subject>Cytoskeletal Proteins - antagonists &amp; inhibitors</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Endothelium</subject><subject>Experiments</subject><subject>Flow cytometry</subject><subject>Health aspects</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Injuries</subject><subject>Metabolism</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Palmitic Acid - pharmacology</subject><subject>Polymerization</subject><subject>Proteins</subject><subject>Proto-Oncogene Proteins c-bcl-2 - metabolism</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Saturated fatty acids</subject><subject>Statistical analysis</subject><subject>Up-Regulation - drug effects</subject><subject>Voltage-Dependent Anion Channel 1 - antagonists &amp; inhibitors</subject><subject>Voltage-Dependent Anion Channel 1 - genetics</subject><subject>Voltage-Dependent Anion Channel 1 - metabolism</subject><issn>1942-0900</issn><issn>1942-0994</issn><issn>1942-0994</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkc9v0zAUxy3ExMbgxhlZ4oIE3fwjTuILUlUGVJq0CgZXy0meG1epXeyko_89jtp1bCdOfpY_7_P89EXoDSUXlApxyQgjl0IKQqV4hs6ozNiESJk9P9aEnKKXMa4IyTnL6At0yjkpmaTkDNm56yHourfeYW_w7WKx4PjO9i3-9Xk6o3gR_Nr3EPGVa3zfQmd1h-duNYQd7tvgh2WLp6l9q-8V32HUbQHf_NktweEfG6gtxFfoxOguwuvDeY5-frm6nX2bXN98nc-m15M6k7Kf1BrKpsiYqYWuyiozuml4KU3OJIPGMMabqtA5z7gg2hQ0XfNSAJcS8kpTws_Rp713M1RraGpwfdCd2gS71mGnvLbq8YuzrVr6rSqEyIkokuD9QRD87wFir9Y21tB12oEfomKZYLKkhNKEvnuCrvwQXFpvpGgheJ4VD9RSd6CsMz7NrUepmuayIGXJRJmoj3uqDj7GAOb4ZUrUmLQak1aHpBP-9t81j_B9tAn4sAda6xp9Z_9TB4kBox9oRlIunP8FwDi56w</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Hu, Renming</creator><creator>Li, Rumei</creator><creator>Huang, Jinya</creator><creator>Zhou, Wenbai</creator><creator>Nan, Wu</creator><creator>Li, Yintao</creator><creator>Liu, Naijia</creator><creator>Zhou, Linuo</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8558-1347</orcidid><orcidid>https://orcid.org/0000-0002-7742-2602</orcidid></search><sort><creationdate>2020</creationdate><title>Interaction of TPPP3 with VDAC1 Promotes Endothelial Injury through Activation of Reactive Oxygen Species</title><author>Hu, Renming ; Li, Rumei ; Huang, Jinya ; Zhou, Wenbai ; Nan, Wu ; Li, Yintao ; Liu, Naijia ; Zhou, Linuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-cae8d742fc5ab8b4fadd389f6292edf223db7a634350af713db685e399e6ba103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Apoptosis - drug effects</topic><topic>bcl-2-Associated X Protein - metabolism</topic><topic>Blood circulation disorders</topic><topic>Cytoskeletal Proteins - antagonists &amp; inhibitors</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Endothelium</topic><topic>Experiments</topic><topic>Flow cytometry</topic><topic>Health aspects</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Injuries</topic><topic>Metabolism</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Palmitic Acid - pharmacology</topic><topic>Polymerization</topic><topic>Proteins</topic><topic>Proto-Oncogene Proteins c-bcl-2 - metabolism</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Saturated fatty acids</topic><topic>Statistical analysis</topic><topic>Up-Regulation - drug effects</topic><topic>Voltage-Dependent Anion Channel 1 - antagonists &amp; inhibitors</topic><topic>Voltage-Dependent Anion Channel 1 - genetics</topic><topic>Voltage-Dependent Anion Channel 1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Renming</creatorcontrib><creatorcontrib>Li, Rumei</creatorcontrib><creatorcontrib>Huang, Jinya</creatorcontrib><creatorcontrib>Zhou, Wenbai</creatorcontrib><creatorcontrib>Nan, Wu</creatorcontrib><creatorcontrib>Li, Yintao</creatorcontrib><creatorcontrib>Liu, Naijia</creatorcontrib><creatorcontrib>Zhou, Linuo</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Oxidative medicine and cellular longevity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Renming</au><au>Li, Rumei</au><au>Huang, Jinya</au><au>Zhou, Wenbai</au><au>Nan, Wu</au><au>Li, Yintao</au><au>Liu, Naijia</au><au>Zhou, Linuo</au><au>de Oliveira, Marcos R.</au><au>Marcos R de Oliveira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of TPPP3 with VDAC1 Promotes Endothelial Injury through Activation of Reactive Oxygen Species</atitle><jtitle>Oxidative medicine and cellular longevity</jtitle><addtitle>Oxid Med Cell Longev</addtitle><date>2020</date><risdate>2020</risdate><volume>2020</volume><issue>2020</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1942-0900</issn><issn>1942-0994</issn><eissn>1942-0994</eissn><abstract>Endothelial injury plays a critical role in the pathogenesis of cardiovascular disorders and metabolic-associated vascular complications which are the leading cause of death worldwide. However, the mechanism underlying endothelial dysfunction is not completely understood. The study is aimed at investigating the role of tubulin polymerization-promoting protein family member 3 (TPPP3) in palmitic acid- (PA-) induced endothelial injury. The effect of TPPP3 on human umbilical vein endothelial cells (HUVECs) was determined by evaluating apoptosis, tube formation, and reactive oxygen species (ROS) production. TPPP3 silencing inhibited PA overload-induced apoptosis and production of ROS, along with the alteration of apoptosis-related key proteins such as BCL-2 and Bax. Mechanically, voltage-dependent anion channel 1 (VDAC1) was identified as a novel functional binding partner of TPPP3, and TPPP3 promoted VDAC1 protein stability and its activity. Further studies indicated that TPPP3 could promote apoptosis, ROS production, tube formation, and proapoptotic protein expression and reduce antiapoptotic protein expression through increasing VDAC1 expression under mildly elevated levels of PA. Collectively, these results demonstrated that TPPP3 could promote PA-induced oxidative damage in HUVECs via a VDAC1-dependent pathway, suggesting that TPPP3 might be considered as a potential therapeutic target in vascular disease.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><pmid>33082910</pmid><doi>10.1155/2020/5950195</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8558-1347</orcidid><orcidid>https://orcid.org/0000-0002-7742-2602</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-0900
ispartof Oxidative medicine and cellular longevity, 2020, Vol.2020 (2020), p.1-13
issn 1942-0900
1942-0994
1942-0994
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7556057
source MEDLINE; Wiley Online Library Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access
subjects Antibodies
Apoptosis
Apoptosis - drug effects
bcl-2-Associated X Protein - metabolism
Blood circulation disorders
Cytoskeletal Proteins - antagonists & inhibitors
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - metabolism
Endothelium
Experiments
Flow cytometry
Health aspects
Human Umbilical Vein Endothelial Cells
Humans
Injuries
Metabolism
Neovascularization, Physiologic - drug effects
Oxidative stress
Oxidative Stress - drug effects
Palmitic Acid - pharmacology
Polymerization
Proteins
Proto-Oncogene Proteins c-bcl-2 - metabolism
Reactive oxygen species
Reactive Oxygen Species - metabolism
RNA Interference
RNA, Small Interfering - metabolism
Saturated fatty acids
Statistical analysis
Up-Regulation - drug effects
Voltage-Dependent Anion Channel 1 - antagonists & inhibitors
Voltage-Dependent Anion Channel 1 - genetics
Voltage-Dependent Anion Channel 1 - metabolism
title Interaction of TPPP3 with VDAC1 Promotes Endothelial Injury through Activation of Reactive Oxygen Species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A56%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20TPPP3%20with%20VDAC1%20Promotes%20Endothelial%20Injury%20through%20Activation%20of%20Reactive%20Oxygen%20Species&rft.jtitle=Oxidative%20medicine%20and%20cellular%20longevity&rft.au=Hu,%20Renming&rft.date=2020&rft.volume=2020&rft.issue=2020&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1942-0900&rft.eissn=1942-0994&rft_id=info:doi/10.1155/2020/5950195&rft_dat=%3Cgale_pubme%3EA697088258%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2451753647&rft_id=info:pmid/33082910&rft_galeid=A697088258&rfr_iscdi=true