Characterization of cell fate probabilities in single-cell data with Palantir

Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2019-04, Vol.37 (4), p.451-460
Hauptverfasser: Setty, Manu, Kiseliovas, Vaidotas, Levine, Jacob, Gayoso, Adam, Mazutis, Linas, Pe’er, Dana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 460
container_issue 4
container_start_page 451
container_title Nature biotechnology
container_volume 37
creator Setty, Manu
Kiseliovas, Vaidotas
Levine, Jacob
Gayoso, Adam
Mazutis, Linas
Pe’er, Dana
description Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems. Palantir uses single-cell RNA-seq data to generate continuous models of differentiation, infer developmental trajectories, and calculate the probabilities of cell fate choices.
doi_str_mv 10.1038/s41587-019-0068-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7549125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202209104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-314338217be146b65404696d3034d7cf847c9bb875fea2ab770844e5219ee8f53</originalsourceid><addsrcrecordid>eNp1kUtrGzEUhUVJqF2nP6CbMpBNNtNIM3puCsXkBQnpolkLzfiOLTOWHElOaH59NbbrpoGAQIL73XPv0UHoC8HfCK7leaSESVFiokqMuSzpBzQmjPKScMWP8htvq4yP0KcYlzhDlPOPaFRjqRTBbIzupgsTTJsg2BeTrHeF74oW-r7oTIJiHXxjGtvbZCEW1hXRunkP5ZaYmWSKZ5sWxU_TG5dsOEHHnekjfN7fE_RwefFrel3e3l_dTH_cli0VOJU1oXUtKyIaIJQ3nFFM88azGtd0JtpOUtGqppGCdWAq0wiBJaXAKqIAZMfqCfq-011vmhXMWnApmF6vg12Z8Ft7Y_X_FWcXeu6ftGBUkWoQONsLBP-4gZj0ysbBlHHgN1HnSZwRohTN6OkbdOk3wWV7uqpwPvkjB4rsqDb4GAN0h2UI1kNYeheWzmHpISw99Hx97eLQ8TedDFQ7IOaSm0P4N_p91T95458J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202209104</pqid></control><display><type>article</type><title>Characterization of cell fate probabilities in single-cell data with Palantir</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Setty, Manu ; Kiseliovas, Vaidotas ; Levine, Jacob ; Gayoso, Adam ; Mazutis, Linas ; Pe’er, Dana</creator><creatorcontrib>Setty, Manu ; Kiseliovas, Vaidotas ; Levine, Jacob ; Gayoso, Adam ; Mazutis, Linas ; Pe’er, Dana</creatorcontrib><description>Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems. Palantir uses single-cell RNA-seq data to generate continuous models of differentiation, infer developmental trajectories, and calculate the probabilities of cell fate choices.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-019-0068-4</identifier><identifier>PMID: 30899105</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 631/114/2114 ; 631/114/2397 ; 631/208/200 ; 631/250/232 ; Agriculture ; Algorithms ; Animals ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cell Differentiation - genetics ; Cell fate ; Cell Lineage - genetics ; Differentiation ; Entropy ; Erythropoiesis - genetics ; Gene expression ; Gene Expression Regulation, Developmental ; Gene sequencing ; Hematopoiesis - genetics ; Humans ; Life Sciences ; Markov Chains ; Mice ; Models, Biological ; Models, Statistical ; Plastic properties ; Plasticity ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA - statistics &amp; numerical data ; Single-Cell Analysis - statistics &amp; numerical data ; Statistical analysis ; Trajectories ; Transcription factors</subject><ispartof>Nature biotechnology, 2019-04, Vol.37 (4), p.451-460</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-314338217be146b65404696d3034d7cf847c9bb875fea2ab770844e5219ee8f53</citedby><cites>FETCH-LOGICAL-c470t-314338217be146b65404696d3034d7cf847c9bb875fea2ab770844e5219ee8f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-019-0068-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-019-0068-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30899105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Setty, Manu</creatorcontrib><creatorcontrib>Kiseliovas, Vaidotas</creatorcontrib><creatorcontrib>Levine, Jacob</creatorcontrib><creatorcontrib>Gayoso, Adam</creatorcontrib><creatorcontrib>Mazutis, Linas</creatorcontrib><creatorcontrib>Pe’er, Dana</creatorcontrib><title>Characterization of cell fate probabilities in single-cell data with Palantir</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems. Palantir uses single-cell RNA-seq data to generate continuous models of differentiation, infer developmental trajectories, and calculate the probabilities of cell fate choices.</description><subject>631/114/1305</subject><subject>631/114/2114</subject><subject>631/114/2397</subject><subject>631/208/200</subject><subject>631/250/232</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Cell Lineage - genetics</subject><subject>Differentiation</subject><subject>Entropy</subject><subject>Erythropoiesis - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene sequencing</subject><subject>Hematopoiesis - genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Markov Chains</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA - statistics &amp; numerical data</subject><subject>Single-Cell Analysis - statistics &amp; numerical data</subject><subject>Statistical analysis</subject><subject>Trajectories</subject><subject>Transcription factors</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtrGzEUhUVJqF2nP6CbMpBNNtNIM3puCsXkBQnpolkLzfiOLTOWHElOaH59NbbrpoGAQIL73XPv0UHoC8HfCK7leaSESVFiokqMuSzpBzQmjPKScMWP8htvq4yP0KcYlzhDlPOPaFRjqRTBbIzupgsTTJsg2BeTrHeF74oW-r7oTIJiHXxjGtvbZCEW1hXRunkP5ZaYmWSKZ5sWxU_TG5dsOEHHnekjfN7fE_RwefFrel3e3l_dTH_cli0VOJU1oXUtKyIaIJQ3nFFM88azGtd0JtpOUtGqppGCdWAq0wiBJaXAKqIAZMfqCfq-011vmhXMWnApmF6vg12Z8Ft7Y_X_FWcXeu6ftGBUkWoQONsLBP-4gZj0ysbBlHHgN1HnSZwRohTN6OkbdOk3wWV7uqpwPvkjB4rsqDb4GAN0h2UI1kNYeheWzmHpISw99Hx97eLQ8TedDFQ7IOaSm0P4N_p91T95458J</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Setty, Manu</creator><creator>Kiseliovas, Vaidotas</creator><creator>Levine, Jacob</creator><creator>Gayoso, Adam</creator><creator>Mazutis, Linas</creator><creator>Pe’er, Dana</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190401</creationdate><title>Characterization of cell fate probabilities in single-cell data with Palantir</title><author>Setty, Manu ; Kiseliovas, Vaidotas ; Levine, Jacob ; Gayoso, Adam ; Mazutis, Linas ; Pe’er, Dana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-314338217be146b65404696d3034d7cf847c9bb875fea2ab770844e5219ee8f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/1305</topic><topic>631/114/2114</topic><topic>631/114/2397</topic><topic>631/208/200</topic><topic>631/250/232</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Cell Lineage - genetics</topic><topic>Differentiation</topic><topic>Entropy</topic><topic>Erythropoiesis - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene sequencing</topic><topic>Hematopoiesis - genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Markov Chains</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA - statistics &amp; numerical data</topic><topic>Single-Cell Analysis - statistics &amp; numerical data</topic><topic>Statistical analysis</topic><topic>Trajectories</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Setty, Manu</creatorcontrib><creatorcontrib>Kiseliovas, Vaidotas</creatorcontrib><creatorcontrib>Levine, Jacob</creatorcontrib><creatorcontrib>Gayoso, Adam</creatorcontrib><creatorcontrib>Mazutis, Linas</creatorcontrib><creatorcontrib>Pe’er, Dana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Setty, Manu</au><au>Kiseliovas, Vaidotas</au><au>Levine, Jacob</au><au>Gayoso, Adam</au><au>Mazutis, Linas</au><au>Pe’er, Dana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of cell fate probabilities in single-cell data with Palantir</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>37</volume><issue>4</issue><spage>451</spage><epage>460</epage><pages>451-460</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems. Palantir uses single-cell RNA-seq data to generate continuous models of differentiation, infer developmental trajectories, and calculate the probabilities of cell fate choices.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30899105</pmid><doi>10.1038/s41587-019-0068-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1087-0156
ispartof Nature biotechnology, 2019-04, Vol.37 (4), p.451-460
issn 1087-0156
1546-1696
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7549125
source MEDLINE; SpringerLink Journals; Nature
subjects 631/114/1305
631/114/2114
631/114/2397
631/208/200
631/250/232
Agriculture
Algorithms
Animals
Bioinformatics
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biomedicine
Biotechnology
Bone marrow
Bone Marrow Cells - cytology
Bone Marrow Cells - metabolism
Cell Differentiation - genetics
Cell fate
Cell Lineage - genetics
Differentiation
Entropy
Erythropoiesis - genetics
Gene expression
Gene Expression Regulation, Developmental
Gene sequencing
Hematopoiesis - genetics
Humans
Life Sciences
Markov Chains
Mice
Models, Biological
Models, Statistical
Plastic properties
Plasticity
Ribonucleic acid
RNA
Sequence Analysis, RNA - statistics & numerical data
Single-Cell Analysis - statistics & numerical data
Statistical analysis
Trajectories
Transcription factors
title Characterization of cell fate probabilities in single-cell data with Palantir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20cell%20fate%20probabilities%20in%20single-cell%20data%20with%20Palantir&rft.jtitle=Nature%20biotechnology&rft.au=Setty,%20Manu&rft.date=2019-04-01&rft.volume=37&rft.issue=4&rft.spage=451&rft.epage=460&rft.pages=451-460&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-019-0068-4&rft_dat=%3Cproquest_pubme%3E2202209104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202209104&rft_id=info:pmid/30899105&rfr_iscdi=true