Characterization of cell fate probabilities in single-cell data with Palantir
Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a p...
Gespeichert in:
Veröffentlicht in: | Nature biotechnology 2019-04, Vol.37 (4), p.451-460 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 460 |
---|---|
container_issue | 4 |
container_start_page | 451 |
container_title | Nature biotechnology |
container_volume | 37 |
creator | Setty, Manu Kiseliovas, Vaidotas Levine, Jacob Gayoso, Adam Mazutis, Linas Pe’er, Dana |
description | Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems.
Palantir uses single-cell RNA-seq data to generate continuous models of differentiation, infer developmental trajectories, and calculate the probabilities of cell fate choices. |
doi_str_mv | 10.1038/s41587-019-0068-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7549125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2202209104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-314338217be146b65404696d3034d7cf847c9bb875fea2ab770844e5219ee8f53</originalsourceid><addsrcrecordid>eNp1kUtrGzEUhUVJqF2nP6CbMpBNNtNIM3puCsXkBQnpolkLzfiOLTOWHElOaH59NbbrpoGAQIL73XPv0UHoC8HfCK7leaSESVFiokqMuSzpBzQmjPKScMWP8htvq4yP0KcYlzhDlPOPaFRjqRTBbIzupgsTTJsg2BeTrHeF74oW-r7oTIJiHXxjGtvbZCEW1hXRunkP5ZaYmWSKZ5sWxU_TG5dsOEHHnekjfN7fE_RwefFrel3e3l_dTH_cli0VOJU1oXUtKyIaIJQ3nFFM88azGtd0JtpOUtGqppGCdWAq0wiBJaXAKqIAZMfqCfq-011vmhXMWnApmF6vg12Z8Ft7Y_X_FWcXeu6ftGBUkWoQONsLBP-4gZj0ysbBlHHgN1HnSZwRohTN6OkbdOk3wWV7uqpwPvkjB4rsqDb4GAN0h2UI1kNYeheWzmHpISw99Hx97eLQ8TedDFQ7IOaSm0P4N_p91T95458J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202209104</pqid></control><display><type>article</type><title>Characterization of cell fate probabilities in single-cell data with Palantir</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Setty, Manu ; Kiseliovas, Vaidotas ; Levine, Jacob ; Gayoso, Adam ; Mazutis, Linas ; Pe’er, Dana</creator><creatorcontrib>Setty, Manu ; Kiseliovas, Vaidotas ; Levine, Jacob ; Gayoso, Adam ; Mazutis, Linas ; Pe’er, Dana</creatorcontrib><description>Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems.
Palantir uses single-cell RNA-seq data to generate continuous models of differentiation, infer developmental trajectories, and calculate the probabilities of cell fate choices.</description><identifier>ISSN: 1087-0156</identifier><identifier>EISSN: 1546-1696</identifier><identifier>DOI: 10.1038/s41587-019-0068-4</identifier><identifier>PMID: 30899105</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/114/1305 ; 631/114/2114 ; 631/114/2397 ; 631/208/200 ; 631/250/232 ; Agriculture ; Algorithms ; Animals ; Bioinformatics ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biomedicine ; Biotechnology ; Bone marrow ; Bone Marrow Cells - cytology ; Bone Marrow Cells - metabolism ; Cell Differentiation - genetics ; Cell fate ; Cell Lineage - genetics ; Differentiation ; Entropy ; Erythropoiesis - genetics ; Gene expression ; Gene Expression Regulation, Developmental ; Gene sequencing ; Hematopoiesis - genetics ; Humans ; Life Sciences ; Markov Chains ; Mice ; Models, Biological ; Models, Statistical ; Plastic properties ; Plasticity ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA - statistics & numerical data ; Single-Cell Analysis - statistics & numerical data ; Statistical analysis ; Trajectories ; Transcription factors</subject><ispartof>Nature biotechnology, 2019-04, Vol.37 (4), p.451-460</ispartof><rights>The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-314338217be146b65404696d3034d7cf847c9bb875fea2ab770844e5219ee8f53</citedby><cites>FETCH-LOGICAL-c470t-314338217be146b65404696d3034d7cf847c9bb875fea2ab770844e5219ee8f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41587-019-0068-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41587-019-0068-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30899105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Setty, Manu</creatorcontrib><creatorcontrib>Kiseliovas, Vaidotas</creatorcontrib><creatorcontrib>Levine, Jacob</creatorcontrib><creatorcontrib>Gayoso, Adam</creatorcontrib><creatorcontrib>Mazutis, Linas</creatorcontrib><creatorcontrib>Pe’er, Dana</creatorcontrib><title>Characterization of cell fate probabilities in single-cell data with Palantir</title><title>Nature biotechnology</title><addtitle>Nat Biotechnol</addtitle><addtitle>Nat Biotechnol</addtitle><description>Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems.
Palantir uses single-cell RNA-seq data to generate continuous models of differentiation, infer developmental trajectories, and calculate the probabilities of cell fate choices.</description><subject>631/114/1305</subject><subject>631/114/2114</subject><subject>631/114/2397</subject><subject>631/208/200</subject><subject>631/250/232</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Bioinformatics</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - cytology</subject><subject>Bone Marrow Cells - metabolism</subject><subject>Cell Differentiation - genetics</subject><subject>Cell fate</subject><subject>Cell Lineage - genetics</subject><subject>Differentiation</subject><subject>Entropy</subject><subject>Erythropoiesis - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene sequencing</subject><subject>Hematopoiesis - genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Markov Chains</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Models, Statistical</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA - statistics & numerical data</subject><subject>Single-Cell Analysis - statistics & numerical data</subject><subject>Statistical analysis</subject><subject>Trajectories</subject><subject>Transcription factors</subject><issn>1087-0156</issn><issn>1546-1696</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUtrGzEUhUVJqF2nP6CbMpBNNtNIM3puCsXkBQnpolkLzfiOLTOWHElOaH59NbbrpoGAQIL73XPv0UHoC8HfCK7leaSESVFiokqMuSzpBzQmjPKScMWP8htvq4yP0KcYlzhDlPOPaFRjqRTBbIzupgsTTJsg2BeTrHeF74oW-r7oTIJiHXxjGtvbZCEW1hXRunkP5ZaYmWSKZ5sWxU_TG5dsOEHHnekjfN7fE_RwefFrel3e3l_dTH_cli0VOJU1oXUtKyIaIJQ3nFFM88azGtd0JtpOUtGqppGCdWAq0wiBJaXAKqIAZMfqCfq-011vmhXMWnApmF6vg12Z8Ft7Y_X_FWcXeu6ftGBUkWoQONsLBP-4gZj0ysbBlHHgN1HnSZwRohTN6OkbdOk3wWV7uqpwPvkjB4rsqDb4GAN0h2UI1kNYeheWzmHpISw99Hx97eLQ8TedDFQ7IOaSm0P4N_p91T95458J</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Setty, Manu</creator><creator>Kiseliovas, Vaidotas</creator><creator>Levine, Jacob</creator><creator>Gayoso, Adam</creator><creator>Mazutis, Linas</creator><creator>Pe’er, Dana</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20190401</creationdate><title>Characterization of cell fate probabilities in single-cell data with Palantir</title><author>Setty, Manu ; Kiseliovas, Vaidotas ; Levine, Jacob ; Gayoso, Adam ; Mazutis, Linas ; Pe’er, Dana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-314338217be146b65404696d3034d7cf847c9bb875fea2ab770844e5219ee8f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/114/1305</topic><topic>631/114/2114</topic><topic>631/114/2397</topic><topic>631/208/200</topic><topic>631/250/232</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Bioinformatics</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - cytology</topic><topic>Bone Marrow Cells - metabolism</topic><topic>Cell Differentiation - genetics</topic><topic>Cell fate</topic><topic>Cell Lineage - genetics</topic><topic>Differentiation</topic><topic>Entropy</topic><topic>Erythropoiesis - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene sequencing</topic><topic>Hematopoiesis - genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Markov Chains</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Models, Statistical</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA - statistics & numerical data</topic><topic>Single-Cell Analysis - statistics & numerical data</topic><topic>Statistical analysis</topic><topic>Trajectories</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Setty, Manu</creatorcontrib><creatorcontrib>Kiseliovas, Vaidotas</creatorcontrib><creatorcontrib>Levine, Jacob</creatorcontrib><creatorcontrib>Gayoso, Adam</creatorcontrib><creatorcontrib>Mazutis, Linas</creatorcontrib><creatorcontrib>Pe’er, Dana</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Setty, Manu</au><au>Kiseliovas, Vaidotas</au><au>Levine, Jacob</au><au>Gayoso, Adam</au><au>Mazutis, Linas</au><au>Pe’er, Dana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of cell fate probabilities in single-cell data with Palantir</atitle><jtitle>Nature biotechnology</jtitle><stitle>Nat Biotechnol</stitle><addtitle>Nat Biotechnol</addtitle><date>2019-04-01</date><risdate>2019</risdate><volume>37</volume><issue>4</issue><spage>451</spage><epage>460</epage><pages>451-460</pages><issn>1087-0156</issn><eissn>1546-1696</eissn><abstract>Single-cell RNA sequencing studies of differentiating systems have raised fundamental questions regarding the discrete versus continuous nature of both differentiation and cell fate. Here we present Palantir, an algorithm that models trajectories of differentiating cells by treating cell fate as a probabilistic process and leverages entropy to measure cell plasticity along the trajectory. Palantir generates a high-resolution pseudo-time ordering of cells and, for each cell state, assigns a probability of differentiating into each terminal state. We apply our algorithm to human bone marrow single-cell RNA sequencing data and detect important landmarks of hematopoietic differentiation. Palantir’s resolution enables the identification of key transcription factors that drive lineage fate choice and closely track when cells lose plasticity. We show that Palantir outperforms existing algorithms in identifying cell lineages and recapitulating gene expression trends during differentiation, is generalizable to diverse tissue types, and is well-suited to resolving less-studied differentiating systems.
Palantir uses single-cell RNA-seq data to generate continuous models of differentiation, infer developmental trajectories, and calculate the probabilities of cell fate choices.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>30899105</pmid><doi>10.1038/s41587-019-0068-4</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | Nature biotechnology, 2019-04, Vol.37 (4), p.451-460 |
issn | 1087-0156 1546-1696 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7549125 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | 631/114/1305 631/114/2114 631/114/2397 631/208/200 631/250/232 Agriculture Algorithms Animals Bioinformatics Biomedical and Life Sciences Biomedical Engineering/Biotechnology Biomedicine Biotechnology Bone marrow Bone Marrow Cells - cytology Bone Marrow Cells - metabolism Cell Differentiation - genetics Cell fate Cell Lineage - genetics Differentiation Entropy Erythropoiesis - genetics Gene expression Gene Expression Regulation, Developmental Gene sequencing Hematopoiesis - genetics Humans Life Sciences Markov Chains Mice Models, Biological Models, Statistical Plastic properties Plasticity Ribonucleic acid RNA Sequence Analysis, RNA - statistics & numerical data Single-Cell Analysis - statistics & numerical data Statistical analysis Trajectories Transcription factors |
title | Characterization of cell fate probabilities in single-cell data with Palantir |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T01%3A44%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20cell%20fate%20probabilities%20in%20single-cell%20data%20with%20Palantir&rft.jtitle=Nature%20biotechnology&rft.au=Setty,%20Manu&rft.date=2019-04-01&rft.volume=37&rft.issue=4&rft.spage=451&rft.epage=460&rft.pages=451-460&rft.issn=1087-0156&rft.eissn=1546-1696&rft_id=info:doi/10.1038/s41587-019-0068-4&rft_dat=%3Cproquest_pubme%3E2202209104%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202209104&rft_id=info:pmid/30899105&rfr_iscdi=true |