Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder
Neuroimaging studies have shown that major depressive disorder (MDD) is characterized by abnormal neural activity and connectivity. However, hemodynamic imaging techniques lack the temporal resolution needed to resolve the dynamics of brain mechanisms underlying MDD. Moreover, it is unclear whether...
Gespeichert in:
Veröffentlicht in: | Neuropsychopharmacology (New York, N.Y.) N.Y.), 2020-11, Vol.45 (12), p.2030-2037 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2037 |
---|---|
container_issue | 12 |
container_start_page | 2030 |
container_title | Neuropsychopharmacology (New York, N.Y.) |
container_volume | 45 |
creator | Murphy, Michael Whitton, Alexis E Deccy, Stephanie Ironside, Manon L Rutherford, Ashleigh Beltzer, Miranda Sacchet, Matthew Pizzagalli, Diego A |
description | Neuroimaging studies have shown that major depressive disorder (MDD) is characterized by abnormal neural activity and connectivity. However, hemodynamic imaging techniques lack the temporal resolution needed to resolve the dynamics of brain mechanisms underlying MDD. Moreover, it is unclear whether putative abnormalities persist after remission. To address these gaps, we used microstate analysis to study resting-state brain activity in major depressive disorder (MDD). Electroencephalographic (EEG) "microstates" are canonical voltage topographies that reflect brief activations of components of resting-state brain networks. We used polarity-insensitive k-means clustering to segment resting-state high-density (128-channel) EEG data into microstates. Data from 79 healthy controls (HC), 63 individuals with MDD, and 30 individuals with remitted MDD (rMDD) were included. The groups produced similar sets of five microstates, including four widely-reported canonical microstates (A-D). The proportion of microstate D was decreased in MDD and rMDD compared to the HC group (Cohen's d = 0.63 and 0.72, respectively) and the duration and occurrence of microstate D was reduced in the MDD group compared to the HC group (Cohen's d = 0.43 and 0.58, respectively). Among the MDD group, proportion and duration of microstate D were negatively correlated with symptom severity (Spearman's rho = -0.34 and -0.46, respectively). Finally, microstate transition probabilities were nonrandom and the MDD group, relative to the HC and the rMDD groups, exhibited multiple distinct transition probabilities, primarily involving microstates A and C. Our findings highlight both state and trait abnormalities in resting-state brain activity in MDD. |
doi_str_mv | 10.1038/s41386-020-0749-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7547108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418121115</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-983dc174a43d3b77049232319c9c672a15db6641dcba8e803084bc9f7d0fe0733</originalsourceid><addsrcrecordid>eNpdkUFv1DAQhS0EotuFH8AFWeLCJeDJOLFzQaqqQpEqcQGpN8uxJ10vSRzsbCX-PV62VMBpRppvRu_NY-wViHcgUL_PElC3lahFJZTsKnjCNqCkqFqUt0_ZRugOK0C8PWPnOe-FgEa1-jk7w7rphEa9YdNFP8c02TGsgTIPM6eR3JoizY6WnR3jXbLLLjg-BZdiXu1aMJuI_265nT1fkw0rn2z6TinzOJR2HxP3tCTKOdwT9yHH5Cm9YM8GO2Z6-VC37NvHq6-X19XNl0-fLy9uKic7XKtOo3fFiJXosVdKyK7GGqFznWtVbaHxfdtK8K63mrRAoWXvukF5MZBQiFv24XR3OfQTeUdz0TiaJYWi8qeJNph_J3PYmbt4b1QjFZTPbNnbhwMp_jhQXs0UsqNxtDPFQza1BA01ADQFffMfuo-HNBd7hVKtwka3UCg4Uccn5kTDoxgQ5himOYVpSpjmGKY57rz-28Xjxp_08BeU1J0U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2476735861</pqid></control><display><type>article</type><title>Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature - Complete Springer Journals</source><source>PubMed Central</source><creator>Murphy, Michael ; Whitton, Alexis E ; Deccy, Stephanie ; Ironside, Manon L ; Rutherford, Ashleigh ; Beltzer, Miranda ; Sacchet, Matthew ; Pizzagalli, Diego A</creator><creatorcontrib>Murphy, Michael ; Whitton, Alexis E ; Deccy, Stephanie ; Ironside, Manon L ; Rutherford, Ashleigh ; Beltzer, Miranda ; Sacchet, Matthew ; Pizzagalli, Diego A</creatorcontrib><description>Neuroimaging studies have shown that major depressive disorder (MDD) is characterized by abnormal neural activity and connectivity. However, hemodynamic imaging techniques lack the temporal resolution needed to resolve the dynamics of brain mechanisms underlying MDD. Moreover, it is unclear whether putative abnormalities persist after remission. To address these gaps, we used microstate analysis to study resting-state brain activity in major depressive disorder (MDD). Electroencephalographic (EEG) "microstates" are canonical voltage topographies that reflect brief activations of components of resting-state brain networks. We used polarity-insensitive k-means clustering to segment resting-state high-density (128-channel) EEG data into microstates. Data from 79 healthy controls (HC), 63 individuals with MDD, and 30 individuals with remitted MDD (rMDD) were included. The groups produced similar sets of five microstates, including four widely-reported canonical microstates (A-D). The proportion of microstate D was decreased in MDD and rMDD compared to the HC group (Cohen's d = 0.63 and 0.72, respectively) and the duration and occurrence of microstate D was reduced in the MDD group compared to the HC group (Cohen's d = 0.43 and 0.58, respectively). Among the MDD group, proportion and duration of microstate D were negatively correlated with symptom severity (Spearman's rho = -0.34 and -0.46, respectively). Finally, microstate transition probabilities were nonrandom and the MDD group, relative to the HC and the rMDD groups, exhibited multiple distinct transition probabilities, primarily involving microstates A and C. Our findings highlight both state and trait abnormalities in resting-state brain activity in MDD.</description><identifier>ISSN: 0893-133X</identifier><identifier>EISSN: 1740-634X</identifier><identifier>DOI: 10.1038/s41386-020-0749-1</identifier><identifier>PMID: 32590838</identifier><language>eng</language><publisher>England: Nature Publishing Group</publisher><subject>Biomarkers ; Brain - diagnostic imaging ; Depressive Disorder, Major - diagnostic imaging ; EEG ; Electroencephalography ; Humans ; Mental depression ; Neural networks ; Neuroimaging ; Polarity ; Remission</subject><ispartof>Neuropsychopharmacology (New York, N.Y.), 2020-11, Vol.45 (12), p.2030-2037</ispartof><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2020.</rights><rights>The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c493t-983dc174a43d3b77049232319c9c672a15db6641dcba8e803084bc9f7d0fe0733</citedby><cites>FETCH-LOGICAL-c493t-983dc174a43d3b77049232319c9c672a15db6641dcba8e803084bc9f7d0fe0733</cites><orcidid>0000-0002-7772-1143 ; 0000-0002-8014-763X ; 0000-0002-7944-2172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547108/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7547108/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32590838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murphy, Michael</creatorcontrib><creatorcontrib>Whitton, Alexis E</creatorcontrib><creatorcontrib>Deccy, Stephanie</creatorcontrib><creatorcontrib>Ironside, Manon L</creatorcontrib><creatorcontrib>Rutherford, Ashleigh</creatorcontrib><creatorcontrib>Beltzer, Miranda</creatorcontrib><creatorcontrib>Sacchet, Matthew</creatorcontrib><creatorcontrib>Pizzagalli, Diego A</creatorcontrib><title>Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder</title><title>Neuropsychopharmacology (New York, N.Y.)</title><addtitle>Neuropsychopharmacology</addtitle><description>Neuroimaging studies have shown that major depressive disorder (MDD) is characterized by abnormal neural activity and connectivity. However, hemodynamic imaging techniques lack the temporal resolution needed to resolve the dynamics of brain mechanisms underlying MDD. Moreover, it is unclear whether putative abnormalities persist after remission. To address these gaps, we used microstate analysis to study resting-state brain activity in major depressive disorder (MDD). Electroencephalographic (EEG) "microstates" are canonical voltage topographies that reflect brief activations of components of resting-state brain networks. We used polarity-insensitive k-means clustering to segment resting-state high-density (128-channel) EEG data into microstates. Data from 79 healthy controls (HC), 63 individuals with MDD, and 30 individuals with remitted MDD (rMDD) were included. The groups produced similar sets of five microstates, including four widely-reported canonical microstates (A-D). The proportion of microstate D was decreased in MDD and rMDD compared to the HC group (Cohen's d = 0.63 and 0.72, respectively) and the duration and occurrence of microstate D was reduced in the MDD group compared to the HC group (Cohen's d = 0.43 and 0.58, respectively). Among the MDD group, proportion and duration of microstate D were negatively correlated with symptom severity (Spearman's rho = -0.34 and -0.46, respectively). Finally, microstate transition probabilities were nonrandom and the MDD group, relative to the HC and the rMDD groups, exhibited multiple distinct transition probabilities, primarily involving microstates A and C. Our findings highlight both state and trait abnormalities in resting-state brain activity in MDD.</description><subject>Biomarkers</subject><subject>Brain - diagnostic imaging</subject><subject>Depressive Disorder, Major - diagnostic imaging</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Humans</subject><subject>Mental depression</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Polarity</subject><subject>Remission</subject><issn>0893-133X</issn><issn>1740-634X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkUFv1DAQhS0EotuFH8AFWeLCJeDJOLFzQaqqQpEqcQGpN8uxJ10vSRzsbCX-PV62VMBpRppvRu_NY-wViHcgUL_PElC3lahFJZTsKnjCNqCkqFqUt0_ZRugOK0C8PWPnOe-FgEa1-jk7w7rphEa9YdNFP8c02TGsgTIPM6eR3JoizY6WnR3jXbLLLjg-BZdiXu1aMJuI_265nT1fkw0rn2z6TinzOJR2HxP3tCTKOdwT9yHH5Cm9YM8GO2Z6-VC37NvHq6-X19XNl0-fLy9uKic7XKtOo3fFiJXosVdKyK7GGqFznWtVbaHxfdtK8K63mrRAoWXvukF5MZBQiFv24XR3OfQTeUdz0TiaJYWi8qeJNph_J3PYmbt4b1QjFZTPbNnbhwMp_jhQXs0UsqNxtDPFQza1BA01ADQFffMfuo-HNBd7hVKtwka3UCg4Uccn5kTDoxgQ5himOYVpSpjmGKY57rz-28Xjxp_08BeU1J0U</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Murphy, Michael</creator><creator>Whitton, Alexis E</creator><creator>Deccy, Stephanie</creator><creator>Ironside, Manon L</creator><creator>Rutherford, Ashleigh</creator><creator>Beltzer, Miranda</creator><creator>Sacchet, Matthew</creator><creator>Pizzagalli, Diego A</creator><general>Nature Publishing Group</general><general>Springer International Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7772-1143</orcidid><orcidid>https://orcid.org/0000-0002-8014-763X</orcidid><orcidid>https://orcid.org/0000-0002-7944-2172</orcidid></search><sort><creationdate>20201101</creationdate><title>Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder</title><author>Murphy, Michael ; Whitton, Alexis E ; Deccy, Stephanie ; Ironside, Manon L ; Rutherford, Ashleigh ; Beltzer, Miranda ; Sacchet, Matthew ; Pizzagalli, Diego A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-983dc174a43d3b77049232319c9c672a15db6641dcba8e803084bc9f7d0fe0733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomarkers</topic><topic>Brain - diagnostic imaging</topic><topic>Depressive Disorder, Major - diagnostic imaging</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Humans</topic><topic>Mental depression</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Polarity</topic><topic>Remission</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murphy, Michael</creatorcontrib><creatorcontrib>Whitton, Alexis E</creatorcontrib><creatorcontrib>Deccy, Stephanie</creatorcontrib><creatorcontrib>Ironside, Manon L</creatorcontrib><creatorcontrib>Rutherford, Ashleigh</creatorcontrib><creatorcontrib>Beltzer, Miranda</creatorcontrib><creatorcontrib>Sacchet, Matthew</creatorcontrib><creatorcontrib>Pizzagalli, Diego A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murphy, Michael</au><au>Whitton, Alexis E</au><au>Deccy, Stephanie</au><au>Ironside, Manon L</au><au>Rutherford, Ashleigh</au><au>Beltzer, Miranda</au><au>Sacchet, Matthew</au><au>Pizzagalli, Diego A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder</atitle><jtitle>Neuropsychopharmacology (New York, N.Y.)</jtitle><addtitle>Neuropsychopharmacology</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>45</volume><issue>12</issue><spage>2030</spage><epage>2037</epage><pages>2030-2037</pages><issn>0893-133X</issn><eissn>1740-634X</eissn><abstract>Neuroimaging studies have shown that major depressive disorder (MDD) is characterized by abnormal neural activity and connectivity. However, hemodynamic imaging techniques lack the temporal resolution needed to resolve the dynamics of brain mechanisms underlying MDD. Moreover, it is unclear whether putative abnormalities persist after remission. To address these gaps, we used microstate analysis to study resting-state brain activity in major depressive disorder (MDD). Electroencephalographic (EEG) "microstates" are canonical voltage topographies that reflect brief activations of components of resting-state brain networks. We used polarity-insensitive k-means clustering to segment resting-state high-density (128-channel) EEG data into microstates. Data from 79 healthy controls (HC), 63 individuals with MDD, and 30 individuals with remitted MDD (rMDD) were included. The groups produced similar sets of five microstates, including four widely-reported canonical microstates (A-D). The proportion of microstate D was decreased in MDD and rMDD compared to the HC group (Cohen's d = 0.63 and 0.72, respectively) and the duration and occurrence of microstate D was reduced in the MDD group compared to the HC group (Cohen's d = 0.43 and 0.58, respectively). Among the MDD group, proportion and duration of microstate D were negatively correlated with symptom severity (Spearman's rho = -0.34 and -0.46, respectively). Finally, microstate transition probabilities were nonrandom and the MDD group, relative to the HC and the rMDD groups, exhibited multiple distinct transition probabilities, primarily involving microstates A and C. Our findings highlight both state and trait abnormalities in resting-state brain activity in MDD.</abstract><cop>England</cop><pub>Nature Publishing Group</pub><pmid>32590838</pmid><doi>10.1038/s41386-020-0749-1</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7772-1143</orcidid><orcidid>https://orcid.org/0000-0002-8014-763X</orcidid><orcidid>https://orcid.org/0000-0002-7944-2172</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-133X |
ispartof | Neuropsychopharmacology (New York, N.Y.), 2020-11, Vol.45 (12), p.2030-2037 |
issn | 0893-133X 1740-634X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7547108 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature - Complete Springer Journals; PubMed Central |
subjects | Biomarkers Brain - diagnostic imaging Depressive Disorder, Major - diagnostic imaging EEG Electroencephalography Humans Mental depression Neural networks Neuroimaging Polarity Remission |
title | Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A49%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abnormalities%20in%20electroencephalographic%20microstates%20are%20state%20and%20trait%20markers%20of%20major%20depressive%20disorder&rft.jtitle=Neuropsychopharmacology%20(New%20York,%20N.Y.)&rft.au=Murphy,%20Michael&rft.date=2020-11-01&rft.volume=45&rft.issue=12&rft.spage=2030&rft.epage=2037&rft.pages=2030-2037&rft.issn=0893-133X&rft.eissn=1740-634X&rft_id=info:doi/10.1038/s41386-020-0749-1&rft_dat=%3Cproquest_pubme%3E2418121115%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2476735861&rft_id=info:pmid/32590838&rfr_iscdi=true |