Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury

The crosstalk between cardiac microvascular endothelial cells (CMECs) and cardiomyocytes (CMs) has emerged as a key component in the development of, and protection against, cardiac diseases. For example, activation of endothelial nitric oxide synthase (eNOS) in CMECs, by therapeutic strategies such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theranostics 2020-01, Vol.10 (25), p.11754-11774
Hauptverfasser: Chen, Guihao, Xu, Chuansheng, Gillette, Thomas G, Huang, Tongyi, Huang, Peisen, Li, Qing, Li, Xiangdong, Li, Qinfeng, Ning, Yu, Tang, Ruijie, Huang, Cunrong, Xiong, Yuyan, Tian, Xiaqiu, Xu, Jun, Xu, Junyan, Chang, Liping, Wei, Cong, Jin, Chen, Hill, Joseph A, Yang, Yuejin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11774
container_issue 25
container_start_page 11754
container_title Theranostics
container_volume 10
creator Chen, Guihao
Xu, Chuansheng
Gillette, Thomas G
Huang, Tongyi
Huang, Peisen
Li, Qing
Li, Xiangdong
Li, Qinfeng
Ning, Yu
Tang, Ruijie
Huang, Cunrong
Xiong, Yuyan
Tian, Xiaqiu
Xu, Jun
Xu, Junyan
Chang, Liping
Wei, Cong
Jin, Chen
Hill, Joseph A
Yang, Yuejin
description The crosstalk between cardiac microvascular endothelial cells (CMECs) and cardiomyocytes (CMs) has emerged as a key component in the development of, and protection against, cardiac diseases. For example, activation of endothelial nitric oxide synthase (eNOS) in CMECs, by therapeutic strategies such as ischemic preconditioning, plays a critical role in the protection against myocardial ischemia/reperfusion (I/R) injury. However, much less is known about the signals produced by CMs that are able to regulate CMEC biology. Here we uncovered one such mechanism using Tongxinluo (TXL), a traditional Chinese medicine, that alleviates myocardial ischemia/reperfusion (I/R) injury by activating CMEC eNOS. The aim of our study is to identify the signals produced by CMs that can regulate CMEC biology during I/R. and settings of ischemia-reperfusion were used in our study, with the protective signaling pathways activated in CMECs identified using genetic inhibition (p70s6k1 siRNA, miR-145-5p mimics, etc.), chemical inhibitors (the eNOS inhibitor, L-NNA, and the small extracellular vesicles (sEVs) inhibitor, GW4869) and Western blot analyses. TritonX-100 at a dose of 0.125% was utilized to inactivate the eNOS activity in endothelium to investigate the role of CMEC-derived eNOS in TXL-induced cardioprotection. We found that while CMEC-derived eNOS activity was required for the cardioprotection of TXL, activation of eNOS in CMECs by TXL did not occur directly. Instead, eNOS activation in CMECs required a crosstalk between CMs and CMECs through the uptake of CM-derived sEVs. We further demonstrate that TXL induced CM-sEVs contain increased levels of Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (Linc-ROR). Upon uptake into CMECs, linc-ROR downregulates its target miR-145-5p leading to activation of the eNOS pathway by facilitating the expression of p70s6k1 in these cells. The activation of CMEC-derived eNOS works to increase survival in both the CMECs and the CMs themselves. These data uncover a mechanism by which the crosstalk between CMs and CMECs leads to the increased survival of the heart after I/R injury and point to a new therapeutic target for the blunting of myocardial I/R injury.
doi_str_mv 10.7150/thno.43163
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7546010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598244549</sourcerecordid><originalsourceid>FETCH-LOGICAL-p191t-55a30dad5380d7f004839c53ed10e5242e7cfc4f802fcd568b436f238b665f693</originalsourceid><addsrcrecordid>eNpVkctqHDEQRZtAsI3jTT4gCLJuW89-bAJhyMNgbEicdVMjVc9oUEsdSd14vii_GTl2TFKbWlTdc6lbVfWW0cuWKXqV9z5cSsEa8ao6Y53o6raR9LS6SOlAS0nKe9afVKdCUMW5VGfVrw1EY8N0DPqYsTYY7YqGpAmcI_iQI2h0bnEQyYrJaoeJaPAk2Z2HsnF7952AznaFbIMn1pdpAYImk9UxrJD0HzF6E_IenS2iR2IiOZA5how6E9iB9SmT66T3OFm4-oYzxnFJT8jDEo9vqtcjuIQXz_28-vH50_3ma31z9-V68_GmnlnPcq0UCGrAKNFR047l5E70Wgk0jKLikmOrRy3HjvJRG9V0WymakYtu2zRqbHpxXn144s7LdkKj0ZcI3DBHO0E8DgHs8P_E2_2wC-vQKtlQRgvg_TMghp8LpjwcwhJLVmngqu-4lEo-2rz71-aF__cx4jf9BpQA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598244549</pqid></control><display><type>article</type><title>Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><creator>Chen, Guihao ; Xu, Chuansheng ; Gillette, Thomas G ; Huang, Tongyi ; Huang, Peisen ; Li, Qing ; Li, Xiangdong ; Li, Qinfeng ; Ning, Yu ; Tang, Ruijie ; Huang, Cunrong ; Xiong, Yuyan ; Tian, Xiaqiu ; Xu, Jun ; Xu, Junyan ; Chang, Liping ; Wei, Cong ; Jin, Chen ; Hill, Joseph A ; Yang, Yuejin</creator><creatorcontrib>Chen, Guihao ; Xu, Chuansheng ; Gillette, Thomas G ; Huang, Tongyi ; Huang, Peisen ; Li, Qing ; Li, Xiangdong ; Li, Qinfeng ; Ning, Yu ; Tang, Ruijie ; Huang, Cunrong ; Xiong, Yuyan ; Tian, Xiaqiu ; Xu, Jun ; Xu, Junyan ; Chang, Liping ; Wei, Cong ; Jin, Chen ; Hill, Joseph A ; Yang, Yuejin</creatorcontrib><description>The crosstalk between cardiac microvascular endothelial cells (CMECs) and cardiomyocytes (CMs) has emerged as a key component in the development of, and protection against, cardiac diseases. For example, activation of endothelial nitric oxide synthase (eNOS) in CMECs, by therapeutic strategies such as ischemic preconditioning, plays a critical role in the protection against myocardial ischemia/reperfusion (I/R) injury. However, much less is known about the signals produced by CMs that are able to regulate CMEC biology. Here we uncovered one such mechanism using Tongxinluo (TXL), a traditional Chinese medicine, that alleviates myocardial ischemia/reperfusion (I/R) injury by activating CMEC eNOS. The aim of our study is to identify the signals produced by CMs that can regulate CMEC biology during I/R. and settings of ischemia-reperfusion were used in our study, with the protective signaling pathways activated in CMECs identified using genetic inhibition (p70s6k1 siRNA, miR-145-5p mimics, etc.), chemical inhibitors (the eNOS inhibitor, L-NNA, and the small extracellular vesicles (sEVs) inhibitor, GW4869) and Western blot analyses. TritonX-100 at a dose of 0.125% was utilized to inactivate the eNOS activity in endothelium to investigate the role of CMEC-derived eNOS in TXL-induced cardioprotection. We found that while CMEC-derived eNOS activity was required for the cardioprotection of TXL, activation of eNOS in CMECs by TXL did not occur directly. Instead, eNOS activation in CMECs required a crosstalk between CMs and CMECs through the uptake of CM-derived sEVs. We further demonstrate that TXL induced CM-sEVs contain increased levels of Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (Linc-ROR). Upon uptake into CMECs, linc-ROR downregulates its target miR-145-5p leading to activation of the eNOS pathway by facilitating the expression of p70s6k1 in these cells. The activation of CMEC-derived eNOS works to increase survival in both the CMECs and the CMs themselves. These data uncover a mechanism by which the crosstalk between CMs and CMECs leads to the increased survival of the heart after I/R injury and point to a new therapeutic target for the blunting of myocardial I/R injury.</description><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.43163</identifier><identifier>PMID: 33052245</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher Pty Ltd</publisher><subject>Cardiomyocytes ; Cardiovascular disease ; Coronary vessels ; Endothelium ; Extracellular vesicles ; Heart ; Ischemia ; Laboratory animals ; Ostomy ; Physiology ; Research Paper</subject><ispartof>Theranostics, 2020-01, Vol.10 (25), p.11754-11774</ispartof><rights>The author(s).</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546010/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546010/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33052245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Guihao</creatorcontrib><creatorcontrib>Xu, Chuansheng</creatorcontrib><creatorcontrib>Gillette, Thomas G</creatorcontrib><creatorcontrib>Huang, Tongyi</creatorcontrib><creatorcontrib>Huang, Peisen</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Li, Xiangdong</creatorcontrib><creatorcontrib>Li, Qinfeng</creatorcontrib><creatorcontrib>Ning, Yu</creatorcontrib><creatorcontrib>Tang, Ruijie</creatorcontrib><creatorcontrib>Huang, Cunrong</creatorcontrib><creatorcontrib>Xiong, Yuyan</creatorcontrib><creatorcontrib>Tian, Xiaqiu</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Xu, Junyan</creatorcontrib><creatorcontrib>Chang, Liping</creatorcontrib><creatorcontrib>Wei, Cong</creatorcontrib><creatorcontrib>Jin, Chen</creatorcontrib><creatorcontrib>Hill, Joseph A</creatorcontrib><creatorcontrib>Yang, Yuejin</creatorcontrib><title>Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury</title><title>Theranostics</title><addtitle>Theranostics</addtitle><description>The crosstalk between cardiac microvascular endothelial cells (CMECs) and cardiomyocytes (CMs) has emerged as a key component in the development of, and protection against, cardiac diseases. For example, activation of endothelial nitric oxide synthase (eNOS) in CMECs, by therapeutic strategies such as ischemic preconditioning, plays a critical role in the protection against myocardial ischemia/reperfusion (I/R) injury. However, much less is known about the signals produced by CMs that are able to regulate CMEC biology. Here we uncovered one such mechanism using Tongxinluo (TXL), a traditional Chinese medicine, that alleviates myocardial ischemia/reperfusion (I/R) injury by activating CMEC eNOS. The aim of our study is to identify the signals produced by CMs that can regulate CMEC biology during I/R. and settings of ischemia-reperfusion were used in our study, with the protective signaling pathways activated in CMECs identified using genetic inhibition (p70s6k1 siRNA, miR-145-5p mimics, etc.), chemical inhibitors (the eNOS inhibitor, L-NNA, and the small extracellular vesicles (sEVs) inhibitor, GW4869) and Western blot analyses. TritonX-100 at a dose of 0.125% was utilized to inactivate the eNOS activity in endothelium to investigate the role of CMEC-derived eNOS in TXL-induced cardioprotection. We found that while CMEC-derived eNOS activity was required for the cardioprotection of TXL, activation of eNOS in CMECs by TXL did not occur directly. Instead, eNOS activation in CMECs required a crosstalk between CMs and CMECs through the uptake of CM-derived sEVs. We further demonstrate that TXL induced CM-sEVs contain increased levels of Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (Linc-ROR). Upon uptake into CMECs, linc-ROR downregulates its target miR-145-5p leading to activation of the eNOS pathway by facilitating the expression of p70s6k1 in these cells. The activation of CMEC-derived eNOS works to increase survival in both the CMECs and the CMs themselves. These data uncover a mechanism by which the crosstalk between CMs and CMECs leads to the increased survival of the heart after I/R injury and point to a new therapeutic target for the blunting of myocardial I/R injury.</description><subject>Cardiomyocytes</subject><subject>Cardiovascular disease</subject><subject>Coronary vessels</subject><subject>Endothelium</subject><subject>Extracellular vesicles</subject><subject>Heart</subject><subject>Ischemia</subject><subject>Laboratory animals</subject><subject>Ostomy</subject><subject>Physiology</subject><subject>Research Paper</subject><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpVkctqHDEQRZtAsI3jTT4gCLJuW89-bAJhyMNgbEicdVMjVc9oUEsdSd14vii_GTl2TFKbWlTdc6lbVfWW0cuWKXqV9z5cSsEa8ao6Y53o6raR9LS6SOlAS0nKe9afVKdCUMW5VGfVrw1EY8N0DPqYsTYY7YqGpAmcI_iQI2h0bnEQyYrJaoeJaPAk2Z2HsnF7952AznaFbIMn1pdpAYImk9UxrJD0HzF6E_IenS2iR2IiOZA5how6E9iB9SmT66T3OFm4-oYzxnFJT8jDEo9vqtcjuIQXz_28-vH50_3ma31z9-V68_GmnlnPcq0UCGrAKNFR047l5E70Wgk0jKLikmOrRy3HjvJRG9V0WymakYtu2zRqbHpxXn144s7LdkKj0ZcI3DBHO0E8DgHs8P_E2_2wC-vQKtlQRgvg_TMghp8LpjwcwhJLVmngqu-4lEo-2rz71-aF__cx4jf9BpQA</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Chen, Guihao</creator><creator>Xu, Chuansheng</creator><creator>Gillette, Thomas G</creator><creator>Huang, Tongyi</creator><creator>Huang, Peisen</creator><creator>Li, Qing</creator><creator>Li, Xiangdong</creator><creator>Li, Qinfeng</creator><creator>Ning, Yu</creator><creator>Tang, Ruijie</creator><creator>Huang, Cunrong</creator><creator>Xiong, Yuyan</creator><creator>Tian, Xiaqiu</creator><creator>Xu, Jun</creator><creator>Xu, Junyan</creator><creator>Chang, Liping</creator><creator>Wei, Cong</creator><creator>Jin, Chen</creator><creator>Hill, Joseph A</creator><creator>Yang, Yuejin</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury</title><author>Chen, Guihao ; Xu, Chuansheng ; Gillette, Thomas G ; Huang, Tongyi ; Huang, Peisen ; Li, Qing ; Li, Xiangdong ; Li, Qinfeng ; Ning, Yu ; Tang, Ruijie ; Huang, Cunrong ; Xiong, Yuyan ; Tian, Xiaqiu ; Xu, Jun ; Xu, Junyan ; Chang, Liping ; Wei, Cong ; Jin, Chen ; Hill, Joseph A ; Yang, Yuejin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p191t-55a30dad5380d7f004839c53ed10e5242e7cfc4f802fcd568b436f238b665f693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cardiomyocytes</topic><topic>Cardiovascular disease</topic><topic>Coronary vessels</topic><topic>Endothelium</topic><topic>Extracellular vesicles</topic><topic>Heart</topic><topic>Ischemia</topic><topic>Laboratory animals</topic><topic>Ostomy</topic><topic>Physiology</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guihao</creatorcontrib><creatorcontrib>Xu, Chuansheng</creatorcontrib><creatorcontrib>Gillette, Thomas G</creatorcontrib><creatorcontrib>Huang, Tongyi</creatorcontrib><creatorcontrib>Huang, Peisen</creatorcontrib><creatorcontrib>Li, Qing</creatorcontrib><creatorcontrib>Li, Xiangdong</creatorcontrib><creatorcontrib>Li, Qinfeng</creatorcontrib><creatorcontrib>Ning, Yu</creatorcontrib><creatorcontrib>Tang, Ruijie</creatorcontrib><creatorcontrib>Huang, Cunrong</creatorcontrib><creatorcontrib>Xiong, Yuyan</creatorcontrib><creatorcontrib>Tian, Xiaqiu</creatorcontrib><creatorcontrib>Xu, Jun</creatorcontrib><creatorcontrib>Xu, Junyan</creatorcontrib><creatorcontrib>Chang, Liping</creatorcontrib><creatorcontrib>Wei, Cong</creatorcontrib><creatorcontrib>Jin, Chen</creatorcontrib><creatorcontrib>Hill, Joseph A</creatorcontrib><creatorcontrib>Yang, Yuejin</creatorcontrib><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guihao</au><au>Xu, Chuansheng</au><au>Gillette, Thomas G</au><au>Huang, Tongyi</au><au>Huang, Peisen</au><au>Li, Qing</au><au>Li, Xiangdong</au><au>Li, Qinfeng</au><au>Ning, Yu</au><au>Tang, Ruijie</au><au>Huang, Cunrong</au><au>Xiong, Yuyan</au><au>Tian, Xiaqiu</au><au>Xu, Jun</au><au>Xu, Junyan</au><au>Chang, Liping</au><au>Wei, Cong</au><au>Jin, Chen</au><au>Hill, Joseph A</au><au>Yang, Yuejin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury</atitle><jtitle>Theranostics</jtitle><addtitle>Theranostics</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>25</issue><spage>11754</spage><epage>11774</epage><pages>11754-11774</pages><eissn>1838-7640</eissn><abstract>The crosstalk between cardiac microvascular endothelial cells (CMECs) and cardiomyocytes (CMs) has emerged as a key component in the development of, and protection against, cardiac diseases. For example, activation of endothelial nitric oxide synthase (eNOS) in CMECs, by therapeutic strategies such as ischemic preconditioning, plays a critical role in the protection against myocardial ischemia/reperfusion (I/R) injury. However, much less is known about the signals produced by CMs that are able to regulate CMEC biology. Here we uncovered one such mechanism using Tongxinluo (TXL), a traditional Chinese medicine, that alleviates myocardial ischemia/reperfusion (I/R) injury by activating CMEC eNOS. The aim of our study is to identify the signals produced by CMs that can regulate CMEC biology during I/R. and settings of ischemia-reperfusion were used in our study, with the protective signaling pathways activated in CMECs identified using genetic inhibition (p70s6k1 siRNA, miR-145-5p mimics, etc.), chemical inhibitors (the eNOS inhibitor, L-NNA, and the small extracellular vesicles (sEVs) inhibitor, GW4869) and Western blot analyses. TritonX-100 at a dose of 0.125% was utilized to inactivate the eNOS activity in endothelium to investigate the role of CMEC-derived eNOS in TXL-induced cardioprotection. We found that while CMEC-derived eNOS activity was required for the cardioprotection of TXL, activation of eNOS in CMECs by TXL did not occur directly. Instead, eNOS activation in CMECs required a crosstalk between CMs and CMECs through the uptake of CM-derived sEVs. We further demonstrate that TXL induced CM-sEVs contain increased levels of Long Intergenic Non-Protein Coding RNA, Regulator Of Reprogramming (Linc-ROR). Upon uptake into CMECs, linc-ROR downregulates its target miR-145-5p leading to activation of the eNOS pathway by facilitating the expression of p70s6k1 in these cells. The activation of CMEC-derived eNOS works to increase survival in both the CMECs and the CMs themselves. These data uncover a mechanism by which the crosstalk between CMs and CMECs leads to the increased survival of the heart after I/R injury and point to a new therapeutic target for the blunting of myocardial I/R injury.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>33052245</pmid><doi>10.7150/thno.43163</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1838-7640
ispartof Theranostics, 2020-01, Vol.10 (25), p.11754-11774
issn 1838-7640
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7546010
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central
subjects Cardiomyocytes
Cardiovascular disease
Coronary vessels
Endothelium
Extracellular vesicles
Heart
Ischemia
Laboratory animals
Ostomy
Physiology
Research Paper
title Cardiomyocyte-derived small extracellular vesicles can signal eNOS activation in cardiac microvascular endothelial cells to protect against Ischemia/Reperfusion injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cardiomyocyte-derived%20small%20extracellular%20vesicles%20can%20signal%20eNOS%20activation%20in%20cardiac%20microvascular%20endothelial%20cells%20to%20protect%20against%20Ischemia/Reperfusion%20injury&rft.jtitle=Theranostics&rft.au=Chen,%20Guihao&rft.date=2020-01-01&rft.volume=10&rft.issue=25&rft.spage=11754&rft.epage=11774&rft.pages=11754-11774&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.43163&rft_dat=%3Cproquest_pubme%3E2598244549%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598244549&rft_id=info:pmid/33052245&rfr_iscdi=true