Four-tier response system and spatial propagation of COVID-19 in China by a network model

In order to investigate the effectiveness of lockdown and social distancing restrictions, which have been widely carried out as policy choice to curb the ongoing COVID-19 pandemic around the world, we formulate and discuss a staged and weighted network system based on a classical SEAIR epidemiologic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical biosciences 2020-12, Vol.330, p.108484-108484, Article 108484
Hauptverfasser: Ge, Jing, He, Daihai, Lin, Zhigui, Zhu, Huaiping, Zhuang, Zian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108484
container_issue
container_start_page 108484
container_title Mathematical biosciences
container_volume 330
creator Ge, Jing
He, Daihai
Lin, Zhigui
Zhu, Huaiping
Zhuang, Zian
description In order to investigate the effectiveness of lockdown and social distancing restrictions, which have been widely carried out as policy choice to curb the ongoing COVID-19 pandemic around the world, we formulate and discuss a staged and weighted network system based on a classical SEAIR epidemiological model. Five stages have been taken into consideration according to four-tier response to Public Health Crisis, which comes from the National Contingency Plan in China. Staggered basic reproduction number has been derived and we evaluate the effectiveness of lockdown and social distancing policies under different scenarios among 19 cities/regions in mainland China. Further, we estimate the infection risk associated with the sequential release based on population mobility between cities and the intensity of some non-pharmaceutical interventions. Our results reveal that Level I public health emergency response is necessary for high-risk cities, which can flatten the COVID-19 curve effectively and quickly. Moreover, properly designed staggered-release policies are extremely significant for the prevention and control of COVID-19, furthermore, beneficial to economic activities and social stability and development. •Uses a weighted networked model for COVID-19 with four-tier response to Public Health Crisis.•Analyzes and evaluates the effectiveness of lockdown and social distancing in different levels.•Staggered-release policies should be properly designed for different stages of epidemic.
doi_str_mv 10.1016/j.mbs.2020.108484
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002555642030136X</els_id><sourcerecordid>2449993349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-987c6329d29b9bfeb843f48e46c619a6a578fea9b5032abedac4201b48a2fb13</originalsourceid><addsrcrecordid>eNp9kc9rFDEUx4Modq3-AV4k4MXLrPk5kyAIsrZaKPRSBE8hybxps84kYzJb2f--WbYW9eApCfm8L--9D0KvKVlTQtv32_XkypoRdngrocQTtKKq0w2nXDxFK0KYbKRsxQl6UcqWENpR2j5HJ5wTrnkrV-j7edrlZgmQcYYyp1gAl31ZYMI29rjMdgl2xHNOs72p9xRxGvDm6tvF54ZqHCLe3IZosdtjiyMsv1L-gafUw_gSPRvsWODVw3mKrs_Prjdfm8urLxebT5eNF51eGq0633Kme6addgM4JfggFIjWt1Tb1spODWC1k4Qz66C3XjBCnVCWDY7yU_TxGDvv3AS9h7hkO5o5h8nmvUk2mL9_Yrg1N-nOdFIIqWUNePcQkNPPHZTFTKF4GEcbIe2KYUJorTkXuqJv_0G3dXuxTlepTilG64orRY-Uz6mUDMNjM5SYgzezNdWbOXgzR2-15s2fUzxW_BZVgQ9HAOoq76ouU3yA6KEPGfxi-hT-E38PtC6obA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2478821001</pqid></control><display><type>article</type><title>Four-tier response system and spatial propagation of COVID-19 in China by a network model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Ge, Jing ; He, Daihai ; Lin, Zhigui ; Zhu, Huaiping ; Zhuang, Zian</creator><creatorcontrib>Ge, Jing ; He, Daihai ; Lin, Zhigui ; Zhu, Huaiping ; Zhuang, Zian</creatorcontrib><description>In order to investigate the effectiveness of lockdown and social distancing restrictions, which have been widely carried out as policy choice to curb the ongoing COVID-19 pandemic around the world, we formulate and discuss a staged and weighted network system based on a classical SEAIR epidemiological model. Five stages have been taken into consideration according to four-tier response to Public Health Crisis, which comes from the National Contingency Plan in China. Staggered basic reproduction number has been derived and we evaluate the effectiveness of lockdown and social distancing policies under different scenarios among 19 cities/regions in mainland China. Further, we estimate the infection risk associated with the sequential release based on population mobility between cities and the intensity of some non-pharmaceutical interventions. Our results reveal that Level I public health emergency response is necessary for high-risk cities, which can flatten the COVID-19 curve effectively and quickly. Moreover, properly designed staggered-release policies are extremely significant for the prevention and control of COVID-19, furthermore, beneficial to economic activities and social stability and development. •Uses a weighted networked model for COVID-19 with four-tier response to Public Health Crisis.•Analyzes and evaluates the effectiveness of lockdown and social distancing in different levels.•Staggered-release policies should be properly designed for different stages of epidemic.</description><identifier>ISSN: 0025-5564</identifier><identifier>EISSN: 1879-3134</identifier><identifier>DOI: 10.1016/j.mbs.2020.108484</identifier><identifier>PMID: 33039365</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject><![CDATA[Basic reproduction number ; Basic Reproduction Number - statistics & numerical data ; Betacoronavirus ; Biostatistics ; China - epidemiology ; Cities ; Cities - epidemiology ; Cities - statistics & numerical data ; Computer Simulation ; Contingency ; Control stability ; Coronavirus Infections - epidemiology ; Coronavirus Infections - prevention & control ; Coronavirus Infections - transmission ; Coronaviruses ; COVID-19 ; COVID-19 pandemic ; Disease control ; Emergency preparedness ; Emergency response ; Epidemic models ; Epidemiology ; Four-tier response system ; Graph Laplacian operator ; Health risks ; Humans ; Lockdown ; Models, Statistical ; Network model ; Original ; Pandemics ; Pandemics - prevention & control ; Pandemics - statistics & numerical data ; Pneumonia, Viral - epidemiology ; Pneumonia, Viral - prevention & control ; Pneumonia, Viral - transmission ; Policies ; Public Health ; Public Policy ; Quarantine - methods ; SARS-CoV-2 ; Social distancing]]></subject><ispartof>Mathematical biosciences, 2020-12, Vol.330, p.108484-108484, Article 108484</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Science Ltd. Dec 2020</rights><rights>2020 Elsevier Inc. All rights reserved. 2020 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-987c6329d29b9bfeb843f48e46c619a6a578fea9b5032abedac4201b48a2fb13</citedby><cites>FETCH-LOGICAL-c479t-987c6329d29b9bfeb843f48e46c619a6a578fea9b5032abedac4201b48a2fb13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mbs.2020.108484$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33039365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ge, Jing</creatorcontrib><creatorcontrib>He, Daihai</creatorcontrib><creatorcontrib>Lin, Zhigui</creatorcontrib><creatorcontrib>Zhu, Huaiping</creatorcontrib><creatorcontrib>Zhuang, Zian</creatorcontrib><title>Four-tier response system and spatial propagation of COVID-19 in China by a network model</title><title>Mathematical biosciences</title><addtitle>Math Biosci</addtitle><description>In order to investigate the effectiveness of lockdown and social distancing restrictions, which have been widely carried out as policy choice to curb the ongoing COVID-19 pandemic around the world, we formulate and discuss a staged and weighted network system based on a classical SEAIR epidemiological model. Five stages have been taken into consideration according to four-tier response to Public Health Crisis, which comes from the National Contingency Plan in China. Staggered basic reproduction number has been derived and we evaluate the effectiveness of lockdown and social distancing policies under different scenarios among 19 cities/regions in mainland China. Further, we estimate the infection risk associated with the sequential release based on population mobility between cities and the intensity of some non-pharmaceutical interventions. Our results reveal that Level I public health emergency response is necessary for high-risk cities, which can flatten the COVID-19 curve effectively and quickly. Moreover, properly designed staggered-release policies are extremely significant for the prevention and control of COVID-19, furthermore, beneficial to economic activities and social stability and development. •Uses a weighted networked model for COVID-19 with four-tier response to Public Health Crisis.•Analyzes and evaluates the effectiveness of lockdown and social distancing in different levels.•Staggered-release policies should be properly designed for different stages of epidemic.</description><subject>Basic reproduction number</subject><subject>Basic Reproduction Number - statistics &amp; numerical data</subject><subject>Betacoronavirus</subject><subject>Biostatistics</subject><subject>China - epidemiology</subject><subject>Cities</subject><subject>Cities - epidemiology</subject><subject>Cities - statistics &amp; numerical data</subject><subject>Computer Simulation</subject><subject>Contingency</subject><subject>Control stability</subject><subject>Coronavirus Infections - epidemiology</subject><subject>Coronavirus Infections - prevention &amp; control</subject><subject>Coronavirus Infections - transmission</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 pandemic</subject><subject>Disease control</subject><subject>Emergency preparedness</subject><subject>Emergency response</subject><subject>Epidemic models</subject><subject>Epidemiology</subject><subject>Four-tier response system</subject><subject>Graph Laplacian operator</subject><subject>Health risks</subject><subject>Humans</subject><subject>Lockdown</subject><subject>Models, Statistical</subject><subject>Network model</subject><subject>Original</subject><subject>Pandemics</subject><subject>Pandemics - prevention &amp; control</subject><subject>Pandemics - statistics &amp; numerical data</subject><subject>Pneumonia, Viral - epidemiology</subject><subject>Pneumonia, Viral - prevention &amp; control</subject><subject>Pneumonia, Viral - transmission</subject><subject>Policies</subject><subject>Public Health</subject><subject>Public Policy</subject><subject>Quarantine - methods</subject><subject>SARS-CoV-2</subject><subject>Social distancing</subject><issn>0025-5564</issn><issn>1879-3134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc9rFDEUx4Modq3-AV4k4MXLrPk5kyAIsrZaKPRSBE8hybxps84kYzJb2f--WbYW9eApCfm8L--9D0KvKVlTQtv32_XkypoRdngrocQTtKKq0w2nXDxFK0KYbKRsxQl6UcqWENpR2j5HJ5wTrnkrV-j7edrlZgmQcYYyp1gAl31ZYMI29rjMdgl2xHNOs72p9xRxGvDm6tvF54ZqHCLe3IZosdtjiyMsv1L-gafUw_gSPRvsWODVw3mKrs_Prjdfm8urLxebT5eNF51eGq0633Kme6addgM4JfggFIjWt1Tb1spODWC1k4Qz66C3XjBCnVCWDY7yU_TxGDvv3AS9h7hkO5o5h8nmvUk2mL9_Yrg1N-nOdFIIqWUNePcQkNPPHZTFTKF4GEcbIe2KYUJorTkXuqJv_0G3dXuxTlepTilG64orRY-Uz6mUDMNjM5SYgzezNdWbOXgzR2-15s2fUzxW_BZVgQ9HAOoq76ouU3yA6KEPGfxi-hT-E38PtC6obA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Ge, Jing</creator><creator>He, Daihai</creator><creator>Lin, Zhigui</creator><creator>Zhu, Huaiping</creator><creator>Zhuang, Zian</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7SN</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20201201</creationdate><title>Four-tier response system and spatial propagation of COVID-19 in China by a network model</title><author>Ge, Jing ; He, Daihai ; Lin, Zhigui ; Zhu, Huaiping ; Zhuang, Zian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-987c6329d29b9bfeb843f48e46c619a6a578fea9b5032abedac4201b48a2fb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Basic reproduction number</topic><topic>Basic Reproduction Number - statistics &amp; numerical data</topic><topic>Betacoronavirus</topic><topic>Biostatistics</topic><topic>China - epidemiology</topic><topic>Cities</topic><topic>Cities - epidemiology</topic><topic>Cities - statistics &amp; numerical data</topic><topic>Computer Simulation</topic><topic>Contingency</topic><topic>Control stability</topic><topic>Coronavirus Infections - epidemiology</topic><topic>Coronavirus Infections - prevention &amp; control</topic><topic>Coronavirus Infections - transmission</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 pandemic</topic><topic>Disease control</topic><topic>Emergency preparedness</topic><topic>Emergency response</topic><topic>Epidemic models</topic><topic>Epidemiology</topic><topic>Four-tier response system</topic><topic>Graph Laplacian operator</topic><topic>Health risks</topic><topic>Humans</topic><topic>Lockdown</topic><topic>Models, Statistical</topic><topic>Network model</topic><topic>Original</topic><topic>Pandemics</topic><topic>Pandemics - prevention &amp; control</topic><topic>Pandemics - statistics &amp; numerical data</topic><topic>Pneumonia, Viral - epidemiology</topic><topic>Pneumonia, Viral - prevention &amp; control</topic><topic>Pneumonia, Viral - transmission</topic><topic>Policies</topic><topic>Public Health</topic><topic>Public Policy</topic><topic>Quarantine - methods</topic><topic>SARS-CoV-2</topic><topic>Social distancing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Jing</creatorcontrib><creatorcontrib>He, Daihai</creatorcontrib><creatorcontrib>Lin, Zhigui</creatorcontrib><creatorcontrib>Zhu, Huaiping</creatorcontrib><creatorcontrib>Zhuang, Zian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ecology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Mathematical biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Jing</au><au>He, Daihai</au><au>Lin, Zhigui</au><au>Zhu, Huaiping</au><au>Zhuang, Zian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Four-tier response system and spatial propagation of COVID-19 in China by a network model</atitle><jtitle>Mathematical biosciences</jtitle><addtitle>Math Biosci</addtitle><date>2020-12-01</date><risdate>2020</risdate><volume>330</volume><spage>108484</spage><epage>108484</epage><pages>108484-108484</pages><artnum>108484</artnum><issn>0025-5564</issn><eissn>1879-3134</eissn><abstract>In order to investigate the effectiveness of lockdown and social distancing restrictions, which have been widely carried out as policy choice to curb the ongoing COVID-19 pandemic around the world, we formulate and discuss a staged and weighted network system based on a classical SEAIR epidemiological model. Five stages have been taken into consideration according to four-tier response to Public Health Crisis, which comes from the National Contingency Plan in China. Staggered basic reproduction number has been derived and we evaluate the effectiveness of lockdown and social distancing policies under different scenarios among 19 cities/regions in mainland China. Further, we estimate the infection risk associated with the sequential release based on population mobility between cities and the intensity of some non-pharmaceutical interventions. Our results reveal that Level I public health emergency response is necessary for high-risk cities, which can flatten the COVID-19 curve effectively and quickly. Moreover, properly designed staggered-release policies are extremely significant for the prevention and control of COVID-19, furthermore, beneficial to economic activities and social stability and development. •Uses a weighted networked model for COVID-19 with four-tier response to Public Health Crisis.•Analyzes and evaluates the effectiveness of lockdown and social distancing in different levels.•Staggered-release policies should be properly designed for different stages of epidemic.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>33039365</pmid><doi>10.1016/j.mbs.2020.108484</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0025-5564
ispartof Mathematical biosciences, 2020-12, Vol.330, p.108484-108484, Article 108484
issn 0025-5564
1879-3134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544595
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Basic reproduction number
Basic Reproduction Number - statistics & numerical data
Betacoronavirus
Biostatistics
China - epidemiology
Cities
Cities - epidemiology
Cities - statistics & numerical data
Computer Simulation
Contingency
Control stability
Coronavirus Infections - epidemiology
Coronavirus Infections - prevention & control
Coronavirus Infections - transmission
Coronaviruses
COVID-19
COVID-19 pandemic
Disease control
Emergency preparedness
Emergency response
Epidemic models
Epidemiology
Four-tier response system
Graph Laplacian operator
Health risks
Humans
Lockdown
Models, Statistical
Network model
Original
Pandemics
Pandemics - prevention & control
Pandemics - statistics & numerical data
Pneumonia, Viral - epidemiology
Pneumonia, Viral - prevention & control
Pneumonia, Viral - transmission
Policies
Public Health
Public Policy
Quarantine - methods
SARS-CoV-2
Social distancing
title Four-tier response system and spatial propagation of COVID-19 in China by a network model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Four-tier%20response%20system%20and%20spatial%20propagation%20of%20COVID-19%20in%20China%20by%20a%20network%20model&rft.jtitle=Mathematical%20biosciences&rft.au=Ge,%20Jing&rft.date=2020-12-01&rft.volume=330&rft.spage=108484&rft.epage=108484&rft.pages=108484-108484&rft.artnum=108484&rft.issn=0025-5564&rft.eissn=1879-3134&rft_id=info:doi/10.1016/j.mbs.2020.108484&rft_dat=%3Cproquest_pubme%3E2449993349%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2478821001&rft_id=info:pmid/33039365&rft_els_id=S002555642030136X&rfr_iscdi=true