A Mathieu function boundary spectral method for scattering by multiple variable poro-elastic plates, with applications to metamaterials and acoustics

Many problems in fluid mechanics and acoustics can be modelled by Helmholtz scattering off poro-elastic plates. We develop a boundary spectral method, based on collocation of local Mathieu function expansions, for Helmholtz scattering off multiple variable poro-elastic plates in two dimensions. Such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-21
Hauptverfasser: Colbrook, Matthew J., Kisil, Anastasia V.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 2241
container_start_page 1
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 476
creator Colbrook, Matthew J.
Kisil, Anastasia V.
description Many problems in fluid mechanics and acoustics can be modelled by Helmholtz scattering off poro-elastic plates. We develop a boundary spectral method, based on collocation of local Mathieu function expansions, for Helmholtz scattering off multiple variable poro-elastic plates in two dimensions. Such boundary conditions, namely the varying physical parameters and coupled thin-plate equation, present a considerable challenge to current methods. The new method is fast, accurate and flexible, with the ability to compute expansions in thousands (and even tens of thousands) of Mathieu functions, thus making it a favourable method for the considered geometries. Comparisons are made with elastic boundary element methods, where the new method is found to be faster and more accurate. Our solution representation directly provides a sine series approximation of the far-field directivity and can be evaluated near or on the scatterers, meaning that the near field can be computed stably and efficiently. The new method also allows us to examine the effects of varying stiffness along a plate, which is poorly studied due to limitations of other available techniques. We show that a power-law decrease to zero in stiffness parameters gives rise to unexpected scattering and aeroacoustic effects similar to an acoustic black hole metamaterial.
doi_str_mv 10.1098/rspa.2020.0184
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27097267</jstor_id><sourcerecordid>27097267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-b5f214856198aa657f4cf285c4b9b1e208a16c861690ff7f07715bf7686fab63</originalsourceid><addsrcrecordid>eNpVkc1rHSEUxaU0NGnabXcFl110XtTxazaFEPoFKd1kL1ef5hlmxqk6CflD8v_G4YVAV1685_wuh4PQJ0p2lAz6IpcFdowwsiNU8zfojHJFOzZw-bbNveSdIIyeovel3BFCBqHVO3Ta90RRocQZerrEf6Aeol9xWGdXY5qxTeu8h_yIy-JdzTDiyddD2uOQMi4OavU5zrfYPuJpHWtcRo_vIUewbVhSTp0fodTo8DJC9eUrfoj1gGFZxtjc7UTBNW1QmGBjwVgwzHsMLq2br3xAJ6F9-o8v7zm6-fH95upXd_335--ry-vO9bKvnRWBUa6FpIMGkEIF7gLTwnE7WOoZ0UCl05LKgYSgAlEttQ1KahnAyv4cfTtil9VOfu_8vKU1S45Ti28SRPP_Zo4Hc5vujRKc91I0wJcXQE7_Vl-qmWJxfhxh9i2KYVyw1hKVvEl3R6nLqZTsw-sZSsxWpdmqNFuVZquyGT4fDXelpvyqZooMiknVPwONEJ9o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452098164</pqid></control><display><type>article</type><title>A Mathieu function boundary spectral method for scattering by multiple variable poro-elastic plates, with applications to metamaterials and acoustics</title><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics &amp; Statistics</source><creator>Colbrook, Matthew J. ; Kisil, Anastasia V.</creator><creatorcontrib>Colbrook, Matthew J. ; Kisil, Anastasia V.</creatorcontrib><description>Many problems in fluid mechanics and acoustics can be modelled by Helmholtz scattering off poro-elastic plates. We develop a boundary spectral method, based on collocation of local Mathieu function expansions, for Helmholtz scattering off multiple variable poro-elastic plates in two dimensions. Such boundary conditions, namely the varying physical parameters and coupled thin-plate equation, present a considerable challenge to current methods. The new method is fast, accurate and flexible, with the ability to compute expansions in thousands (and even tens of thousands) of Mathieu functions, thus making it a favourable method for the considered geometries. Comparisons are made with elastic boundary element methods, where the new method is found to be faster and more accurate. Our solution representation directly provides a sine series approximation of the far-field directivity and can be evaluated near or on the scatterers, meaning that the near field can be computed stably and efficiently. The new method also allows us to examine the effects of varying stiffness along a plate, which is poorly studied due to limitations of other available techniques. We show that a power-law decrease to zero in stiffness parameters gives rise to unexpected scattering and aeroacoustic effects similar to an acoustic black hole metamaterial.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2020.0184</identifier><identifier>PMID: 33071575</identifier><language>eng</language><publisher>Royal Society</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-21</ispartof><rights>2020 The Author(s)</rights><rights>2020 The Authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-b5f214856198aa657f4cf285c4b9b1e208a16c861690ff7f07715bf7686fab63</citedby><cites>FETCH-LOGICAL-c363t-b5f214856198aa657f4cf285c4b9b1e208a16c861690ff7f07715bf7686fab63</cites><orcidid>0000-0001-7652-5880 ; 0000-0003-4964-9575</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27097267$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27097267$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>Colbrook, Matthew J.</creatorcontrib><creatorcontrib>Kisil, Anastasia V.</creatorcontrib><title>A Mathieu function boundary spectral method for scattering by multiple variable poro-elastic plates, with applications to metamaterials and acoustics</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><description>Many problems in fluid mechanics and acoustics can be modelled by Helmholtz scattering off poro-elastic plates. We develop a boundary spectral method, based on collocation of local Mathieu function expansions, for Helmholtz scattering off multiple variable poro-elastic plates in two dimensions. Such boundary conditions, namely the varying physical parameters and coupled thin-plate equation, present a considerable challenge to current methods. The new method is fast, accurate and flexible, with the ability to compute expansions in thousands (and even tens of thousands) of Mathieu functions, thus making it a favourable method for the considered geometries. Comparisons are made with elastic boundary element methods, where the new method is found to be faster and more accurate. Our solution representation directly provides a sine series approximation of the far-field directivity and can be evaluated near or on the scatterers, meaning that the near field can be computed stably and efficiently. The new method also allows us to examine the effects of varying stiffness along a plate, which is poorly studied due to limitations of other available techniques. We show that a power-law decrease to zero in stiffness parameters gives rise to unexpected scattering and aeroacoustic effects similar to an acoustic black hole metamaterial.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkc1rHSEUxaU0NGnabXcFl110XtTxazaFEPoFKd1kL1ef5hlmxqk6CflD8v_G4YVAV1685_wuh4PQJ0p2lAz6IpcFdowwsiNU8zfojHJFOzZw-bbNveSdIIyeovel3BFCBqHVO3Ta90RRocQZerrEf6Aeol9xWGdXY5qxTeu8h_yIy-JdzTDiyddD2uOQMi4OavU5zrfYPuJpHWtcRo_vIUewbVhSTp0fodTo8DJC9eUrfoj1gGFZxtjc7UTBNW1QmGBjwVgwzHsMLq2br3xAJ6F9-o8v7zm6-fH95upXd_335--ry-vO9bKvnRWBUa6FpIMGkEIF7gLTwnE7WOoZ0UCl05LKgYSgAlEttQ1KahnAyv4cfTtil9VOfu_8vKU1S45Ti28SRPP_Zo4Hc5vujRKc91I0wJcXQE7_Vl-qmWJxfhxh9i2KYVyw1hKVvEl3R6nLqZTsw-sZSsxWpdmqNFuVZquyGT4fDXelpvyqZooMiknVPwONEJ9o</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Colbrook, Matthew J.</creator><creator>Kisil, Anastasia V.</creator><general>Royal Society</general><general>The Royal Society Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7652-5880</orcidid><orcidid>https://orcid.org/0000-0003-4964-9575</orcidid></search><sort><creationdate>20200901</creationdate><title>A Mathieu function boundary spectral method for scattering by multiple variable poro-elastic plates, with applications to metamaterials and acoustics</title><author>Colbrook, Matthew J. ; Kisil, Anastasia V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-b5f214856198aa657f4cf285c4b9b1e208a16c861690ff7f07715bf7686fab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colbrook, Matthew J.</creatorcontrib><creatorcontrib>Kisil, Anastasia V.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colbrook, Matthew J.</au><au>Kisil, Anastasia V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mathieu function boundary spectral method for scattering by multiple variable poro-elastic plates, with applications to metamaterials and acoustics</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>476</volume><issue>2241</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Many problems in fluid mechanics and acoustics can be modelled by Helmholtz scattering off poro-elastic plates. We develop a boundary spectral method, based on collocation of local Mathieu function expansions, for Helmholtz scattering off multiple variable poro-elastic plates in two dimensions. Such boundary conditions, namely the varying physical parameters and coupled thin-plate equation, present a considerable challenge to current methods. The new method is fast, accurate and flexible, with the ability to compute expansions in thousands (and even tens of thousands) of Mathieu functions, thus making it a favourable method for the considered geometries. Comparisons are made with elastic boundary element methods, where the new method is found to be faster and more accurate. Our solution representation directly provides a sine series approximation of the far-field directivity and can be evaluated near or on the scatterers, meaning that the near field can be computed stably and efficiently. The new method also allows us to examine the effects of varying stiffness along a plate, which is poorly studied due to limitations of other available techniques. We show that a power-law decrease to zero in stiffness parameters gives rise to unexpected scattering and aeroacoustic effects similar to an acoustic black hole metamaterial.</abstract><pub>Royal Society</pub><pmid>33071575</pmid><doi>10.1098/rspa.2020.0184</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-7652-5880</orcidid><orcidid>https://orcid.org/0000-0003-4964-9575</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-21
issn 1364-5021
1471-2946
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544365
source Jstor Complete Legacy; Alma/SFX Local Collection; JSTOR Mathematics & Statistics
title A Mathieu function boundary spectral method for scattering by multiple variable poro-elastic plates, with applications to metamaterials and acoustics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T22%3A12%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mathieu%20function%20boundary%20spectral%20method%20for%20scattering%20by%20multiple%20variable%20poro-elastic%20plates,%20with%20applications%20to%20metamaterials%20and%20acoustics&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Colbrook,%20Matthew%20J.&rft.date=2020-09-01&rft.volume=476&rft.issue=2241&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2020.0184&rft_dat=%3Cjstor_pubme%3E27097267%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452098164&rft_id=info:pmid/33071575&rft_jstor_id=27097267&rfr_iscdi=true