Liquid crystals on deformable surfaces

Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-23
Hauptverfasser: Nitschke, Ingo, Reuther, Sebastian, Voigt, Axel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue 2241
container_start_page 1
container_title Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences
container_volume 476
creator Nitschke, Ingo
Reuther, Sebastian
Voigt, Axel
description Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de Gennes-Helfrich model which considers the simultaneous relaxation of the Q-tensor field and the surface. The resulting system of tensor-valued surface partial differential equation and geometric evolution laws is numerically solved to tackle the rich dynamics of this system and to compute the resulting equilibrium shape. The results strongly depend on the intrinsic and extrinsic curvature contributions and lead to unexpected asymmetric shapes.
doi_str_mv 10.1098/rspa.2020.0313
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27097261</jstor_id><sourcerecordid>27097261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-a704de445b9e1f1149b2c2e8872306f97b18d18936cc751960984d739d35d7283</originalsourceid><addsrcrecordid>eNpVkM1LwzAYh4Mobk6v3pSdxEvrm68muQgy_IKBFz2HNE21o222pBX239uyOfSUF37P-0vyIHSJIcWg5F2Ia5MSIJACxfQITTETOCGKZcfDTDOWcCB4gs5iXAGA4lKcogmlIDCXZIpultWmr4q5DdvYmTrOfTsvXOlDY_LazWMfSmNdPEcn5ZC6i_05Qx9Pj--Ll2T59vy6eFgmlincJUYAKxxjPFcOlxgzlRNLnJSCUMhKJXIsCywVzawVHKts-AIrBFUF5YUgks7Q_a533eeNK6xru2BqvQ5VY8JWe1Pp_0lbfelP_60FZ4zybCi43RcEv-ld7HRTRevq2rTO91ETxgkoBUAHNN2hNvgYgysP12DQo1w9ytWjXD3KHRau_z7ugP_aHICrHbCKnQ-HnAhQgmSY_gAb8349</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452099003</pqid></control><display><type>article</type><title>Liquid crystals on deformable surfaces</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Nitschke, Ingo ; Reuther, Sebastian ; Voigt, Axel</creator><creatorcontrib>Nitschke, Ingo ; Reuther, Sebastian ; Voigt, Axel</creatorcontrib><description>Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de Gennes-Helfrich model which considers the simultaneous relaxation of the Q-tensor field and the surface. The resulting system of tensor-valued surface partial differential equation and geometric evolution laws is numerically solved to tackle the rich dynamics of this system and to compute the resulting equilibrium shape. The results strongly depend on the intrinsic and extrinsic curvature contributions and lead to unexpected asymmetric shapes.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2020.0313</identifier><identifier>PMID: 33071582</identifier><language>eng</language><publisher>England: Royal Society</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-23</ispartof><rights>2020 The Author(s)</rights><rights>2020 The Author(s).</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-a704de445b9e1f1149b2c2e8872306f97b18d18936cc751960984d739d35d7283</citedby><cites>FETCH-LOGICAL-c491t-a704de445b9e1f1149b2c2e8872306f97b18d18936cc751960984d739d35d7283</cites><orcidid>0000-0003-2564-3697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27097261$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27097261$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33071582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nitschke, Ingo</creatorcontrib><creatorcontrib>Reuther, Sebastian</creatorcontrib><creatorcontrib>Voigt, Axel</creatorcontrib><title>Liquid crystals on deformable surfaces</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc Math Phys Eng Sci</addtitle><description>Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de Gennes-Helfrich model which considers the simultaneous relaxation of the Q-tensor field and the surface. The resulting system of tensor-valued surface partial differential equation and geometric evolution laws is numerically solved to tackle the rich dynamics of this system and to compute the resulting equilibrium shape. The results strongly depend on the intrinsic and extrinsic curvature contributions and lead to unexpected asymmetric shapes.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LwzAYh4Mobk6v3pSdxEvrm68muQgy_IKBFz2HNE21o222pBX239uyOfSUF37P-0vyIHSJIcWg5F2Ia5MSIJACxfQITTETOCGKZcfDTDOWcCB4gs5iXAGA4lKcogmlIDCXZIpultWmr4q5DdvYmTrOfTsvXOlDY_LazWMfSmNdPEcn5ZC6i_05Qx9Pj--Ll2T59vy6eFgmlincJUYAKxxjPFcOlxgzlRNLnJSCUMhKJXIsCywVzawVHKts-AIrBFUF5YUgks7Q_a533eeNK6xru2BqvQ5VY8JWe1Pp_0lbfelP_60FZ4zybCi43RcEv-ld7HRTRevq2rTO91ETxgkoBUAHNN2hNvgYgysP12DQo1w9ytWjXD3KHRau_z7ugP_aHICrHbCKnQ-HnAhQgmSY_gAb8349</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Nitschke, Ingo</creator><creator>Reuther, Sebastian</creator><creator>Voigt, Axel</creator><general>Royal Society</general><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2564-3697</orcidid></search><sort><creationdate>20200901</creationdate><title>Liquid crystals on deformable surfaces</title><author>Nitschke, Ingo ; Reuther, Sebastian ; Voigt, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-a704de445b9e1f1149b2c2e8872306f97b18d18936cc751960984d739d35d7283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nitschke, Ingo</creatorcontrib><creatorcontrib>Reuther, Sebastian</creatorcontrib><creatorcontrib>Voigt, Axel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nitschke, Ingo</au><au>Reuther, Sebastian</au><au>Voigt, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid crystals on deformable surfaces</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>476</volume><issue>2241</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de Gennes-Helfrich model which considers the simultaneous relaxation of the Q-tensor field and the surface. The resulting system of tensor-valued surface partial differential equation and geometric evolution laws is numerically solved to tackle the rich dynamics of this system and to compute the resulting equilibrium shape. The results strongly depend on the intrinsic and extrinsic curvature contributions and lead to unexpected asymmetric shapes.</abstract><cop>England</cop><pub>Royal Society</pub><pmid>33071582</pmid><doi>10.1098/rspa.2020.0313</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2564-3697</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-5021
ispartof Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-23
issn 1364-5021
1471-2946
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544356
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
title Liquid crystals on deformable surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20crystals%20on%20deformable%20surfaces&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Nitschke,%20Ingo&rft.date=2020-09-01&rft.volume=476&rft.issue=2241&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2020.0313&rft_dat=%3Cjstor_pubme%3E27097261%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452099003&rft_id=info:pmid/33071582&rft_jstor_id=27097261&rfr_iscdi=true