Liquid crystals on deformable surfaces
Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de G...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | 2241 |
container_start_page | 1 |
container_title | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences |
container_volume | 476 |
creator | Nitschke, Ingo Reuther, Sebastian Voigt, Axel |
description | Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de Gennes-Helfrich model which considers the simultaneous relaxation of the Q-tensor field and the surface. The resulting system of tensor-valued surface partial differential equation and geometric evolution laws is numerically solved to tackle the rich dynamics of this system and to compute the resulting equilibrium shape. The results strongly depend on the intrinsic and extrinsic curvature contributions and lead to unexpected asymmetric shapes. |
doi_str_mv | 10.1098/rspa.2020.0313 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27097261</jstor_id><sourcerecordid>27097261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-a704de445b9e1f1149b2c2e8872306f97b18d18936cc751960984d739d35d7283</originalsourceid><addsrcrecordid>eNpVkM1LwzAYh4Mobk6v3pSdxEvrm68muQgy_IKBFz2HNE21o222pBX239uyOfSUF37P-0vyIHSJIcWg5F2Ia5MSIJACxfQITTETOCGKZcfDTDOWcCB4gs5iXAGA4lKcogmlIDCXZIpultWmr4q5DdvYmTrOfTsvXOlDY_LazWMfSmNdPEcn5ZC6i_05Qx9Pj--Ll2T59vy6eFgmlincJUYAKxxjPFcOlxgzlRNLnJSCUMhKJXIsCywVzawVHKts-AIrBFUF5YUgks7Q_a533eeNK6xru2BqvQ5VY8JWe1Pp_0lbfelP_60FZ4zybCi43RcEv-ld7HRTRevq2rTO91ETxgkoBUAHNN2hNvgYgysP12DQo1w9ytWjXD3KHRau_z7ugP_aHICrHbCKnQ-HnAhQgmSY_gAb8349</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2452099003</pqid></control><display><type>article</type><title>Liquid crystals on deformable surfaces</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Nitschke, Ingo ; Reuther, Sebastian ; Voigt, Axel</creator><creatorcontrib>Nitschke, Ingo ; Reuther, Sebastian ; Voigt, Axel</creatorcontrib><description>Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de Gennes-Helfrich model which considers the simultaneous relaxation of the Q-tensor field and the surface. The resulting system of tensor-valued surface partial differential equation and geometric evolution laws is numerically solved to tackle the rich dynamics of this system and to compute the resulting equilibrium shape. The results strongly depend on the intrinsic and extrinsic curvature contributions and lead to unexpected asymmetric shapes.</description><identifier>ISSN: 1364-5021</identifier><identifier>EISSN: 1471-2946</identifier><identifier>DOI: 10.1098/rspa.2020.0313</identifier><identifier>PMID: 33071582</identifier><language>eng</language><publisher>England: Royal Society</publisher><ispartof>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-23</ispartof><rights>2020 The Author(s)</rights><rights>2020 The Author(s).</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-a704de445b9e1f1149b2c2e8872306f97b18d18936cc751960984d739d35d7283</citedby><cites>FETCH-LOGICAL-c491t-a704de445b9e1f1149b2c2e8872306f97b18d18936cc751960984d739d35d7283</cites><orcidid>0000-0003-2564-3697</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27097261$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27097261$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27924,27925,58017,58021,58250,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33071582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nitschke, Ingo</creatorcontrib><creatorcontrib>Reuther, Sebastian</creatorcontrib><creatorcontrib>Voigt, Axel</creatorcontrib><title>Liquid crystals on deformable surfaces</title><title>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</title><addtitle>Proc Math Phys Eng Sci</addtitle><description>Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de Gennes-Helfrich model which considers the simultaneous relaxation of the Q-tensor field and the surface. The resulting system of tensor-valued surface partial differential equation and geometric evolution laws is numerically solved to tackle the rich dynamics of this system and to compute the resulting equilibrium shape. The results strongly depend on the intrinsic and extrinsic curvature contributions and lead to unexpected asymmetric shapes.</description><issn>1364-5021</issn><issn>1471-2946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LwzAYh4Mobk6v3pSdxEvrm68muQgy_IKBFz2HNE21o222pBX239uyOfSUF37P-0vyIHSJIcWg5F2Ia5MSIJACxfQITTETOCGKZcfDTDOWcCB4gs5iXAGA4lKcogmlIDCXZIpultWmr4q5DdvYmTrOfTsvXOlDY_LazWMfSmNdPEcn5ZC6i_05Qx9Pj--Ll2T59vy6eFgmlincJUYAKxxjPFcOlxgzlRNLnJSCUMhKJXIsCywVzawVHKts-AIrBFUF5YUgks7Q_a533eeNK6xru2BqvQ5VY8JWe1Pp_0lbfelP_60FZ4zybCi43RcEv-ld7HRTRevq2rTO91ETxgkoBUAHNN2hNvgYgysP12DQo1w9ytWjXD3KHRau_z7ugP_aHICrHbCKnQ-HnAhQgmSY_gAb8349</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Nitschke, Ingo</creator><creator>Reuther, Sebastian</creator><creator>Voigt, Axel</creator><general>Royal Society</general><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2564-3697</orcidid></search><sort><creationdate>20200901</creationdate><title>Liquid crystals on deformable surfaces</title><author>Nitschke, Ingo ; Reuther, Sebastian ; Voigt, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-a704de445b9e1f1149b2c2e8872306f97b18d18936cc751960984d739d35d7283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nitschke, Ingo</creatorcontrib><creatorcontrib>Reuther, Sebastian</creatorcontrib><creatorcontrib>Voigt, Axel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nitschke, Ingo</au><au>Reuther, Sebastian</au><au>Voigt, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid crystals on deformable surfaces</atitle><jtitle>Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences</jtitle><addtitle>Proc Math Phys Eng Sci</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>476</volume><issue>2241</issue><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>1364-5021</issn><eissn>1471-2946</eissn><abstract>Liquid crystals with molecules constrained to the tangent bundle of a curved surface show interesting phenomena resulting from the tight coupling of the elastic and bulk-free energies of the liquid crystal with geometric properties of the surface. We derive a thermodynamically consistent Landau-de Gennes-Helfrich model which considers the simultaneous relaxation of the Q-tensor field and the surface. The resulting system of tensor-valued surface partial differential equation and geometric evolution laws is numerically solved to tackle the rich dynamics of this system and to compute the resulting equilibrium shape. The results strongly depend on the intrinsic and extrinsic curvature contributions and lead to unexpected asymmetric shapes.</abstract><cop>England</cop><pub>Royal Society</pub><pmid>33071582</pmid><doi>10.1098/rspa.2020.0313</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-2564-3697</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-5021 |
ispartof | Proceedings of the Royal Society. A, Mathematical, physical, and engineering sciences, 2020-09, Vol.476 (2241), p.1-23 |
issn | 1364-5021 1471-2946 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7544356 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection |
title | Liquid crystals on deformable surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20crystals%20on%20deformable%20surfaces&rft.jtitle=Proceedings%20of%20the%20Royal%20Society.%20A,%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Nitschke,%20Ingo&rft.date=2020-09-01&rft.volume=476&rft.issue=2241&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=1364-5021&rft.eissn=1471-2946&rft_id=info:doi/10.1098/rspa.2020.0313&rft_dat=%3Cjstor_pubme%3E27097261%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2452099003&rft_id=info:pmid/33071582&rft_jstor_id=27097261&rfr_iscdi=true |