Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer

Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign varian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2020-10, Vol.80 (19), p.4233-4243
Hauptverfasser: Hanrahan, Aphrothiti J, Sylvester, Brooke E, Chang, Matthew T, Elzein, Arijh, Gao, Jianjiong, Han, Weiwei, Liu, Ye, Xu, Dong, Gao, Sizhi P, Gorelick, Alexander N, Jones, Alexis M, Kiliti, Amber J, Nissan, Moriah H, Nimura, Clare A, Poteshman, Abigail N, Yao, Zhan, Gao, Yijun, Hu, Wenhuo, Wise, Hannah C, Gavrila, Elena I, Shoushtari, Alexander N, Tiwari, Shakuntala, Viale, Agnes, Abdel-Wahab, Omar, Merghoub, Taha, Berger, Michael F, Rosen, Neal, Taylor, Barry S, Solit, David B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4243
container_issue 19
container_start_page 4233
container_title Cancer research (Chicago, Ill.)
container_volume 80
creator Hanrahan, Aphrothiti J
Sylvester, Brooke E
Chang, Matthew T
Elzein, Arijh
Gao, Jianjiong
Han, Weiwei
Liu, Ye
Xu, Dong
Gao, Sizhi P
Gorelick, Alexander N
Jones, Alexis M
Kiliti, Amber J
Nissan, Moriah H
Nimura, Clare A
Poteshman, Abigail N
Yao, Zhan
Gao, Yijun
Hu, Wenhuo
Wise, Hannah C
Gavrila, Elena I
Shoushtari, Alexander N
Tiwari, Shakuntala
Viale, Agnes
Abdel-Wahab, Omar
Merghoub, Taha
Berger, Michael F
Rosen, Neal
Taylor, Barry S
Solit, David B
description Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign variants. Here we used functional data on and mutations generated in real-time within a co-clinical trial framework to benchmark the predictive value of a three-part methodology. Our computational approach to variant classification incorporated hotspot analysis, three-dimensional molecular dynamics simulation, and sequence paralogy. prediction accurately distinguished functional from benign and mutants, yet drug sensitivity varied widely among activating mutant alleles. These results suggest that multifaceted modeling can inform patient accrual to MEK/ERK inhibitor clinical trials, but computational methods need to be paired with laboratory- and clinic-based efforts designed to unravel variabilities in drug response. SIGNIFICANCE: Leveraging prospective functional characterization of MEK1/2 mutants, it was found that hotspot analysis, molecular dynamics simulation, and sequence paralogy are complementary tools that can robustly prioritize variants for biologic, therapeutic, and clinical validation. .
doi_str_mv 10.1158/0008-5472.can-20-0865
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422008956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-a05bb51de32bc62d3f96c8f9590497624b1863e92247ba80f7cdf57a46bc3a013</originalsourceid><addsrcrecordid>eNpVkd9OHCEUh0lTU1ftI7ThsjejwMAwc9Nku7pqXKuJ9pqcYZld2hmwwNjsE_jaZaNu9AZy4Hc-_nwIfaHkmFJRnxBC6kJwyY41uIKRgtSV-IAmVJR1ITkXH9Fkl9lHBzH-zqWgRHxC-yWrOOWUTNDTwjyaACvrVvhuE5MZIFmN56PTyXoHPZ7mYRNtxMnjH8bp9QDhDwaHLx2-s73VHs8DDOafz8unNqaMGm1cm4hPg81w3AU_4FuI0bhVLq_PrvD1mMCliK3DM3DahCO010EfzeeX-RD9mp_dzy6Kxc355Wy6KDSXMhVARNsKujQla3XFlmXXVLruGtEQ3siK8ZbWVWkaxrhsoSad1MtOSOBVq0sgtDxE35-5D2M7mKU2LgXo1UOw-Vkb5cGq9zvOrtXKPyopOBWNzIBvL4Dg_44mJjXYqE3fgzN-jIpxxvK3N6LKUfEc1cHHGEy3O4YStZWotoLUVpCaTX8qRtRWYu77-vaOu65Xa-V_RtybWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422008956</pqid></control><display><type>article</type><title>Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hanrahan, Aphrothiti J ; Sylvester, Brooke E ; Chang, Matthew T ; Elzein, Arijh ; Gao, Jianjiong ; Han, Weiwei ; Liu, Ye ; Xu, Dong ; Gao, Sizhi P ; Gorelick, Alexander N ; Jones, Alexis M ; Kiliti, Amber J ; Nissan, Moriah H ; Nimura, Clare A ; Poteshman, Abigail N ; Yao, Zhan ; Gao, Yijun ; Hu, Wenhuo ; Wise, Hannah C ; Gavrila, Elena I ; Shoushtari, Alexander N ; Tiwari, Shakuntala ; Viale, Agnes ; Abdel-Wahab, Omar ; Merghoub, Taha ; Berger, Michael F ; Rosen, Neal ; Taylor, Barry S ; Solit, David B</creator><creatorcontrib>Hanrahan, Aphrothiti J ; Sylvester, Brooke E ; Chang, Matthew T ; Elzein, Arijh ; Gao, Jianjiong ; Han, Weiwei ; Liu, Ye ; Xu, Dong ; Gao, Sizhi P ; Gorelick, Alexander N ; Jones, Alexis M ; Kiliti, Amber J ; Nissan, Moriah H ; Nimura, Clare A ; Poteshman, Abigail N ; Yao, Zhan ; Gao, Yijun ; Hu, Wenhuo ; Wise, Hannah C ; Gavrila, Elena I ; Shoushtari, Alexander N ; Tiwari, Shakuntala ; Viale, Agnes ; Abdel-Wahab, Omar ; Merghoub, Taha ; Berger, Michael F ; Rosen, Neal ; Taylor, Barry S ; Solit, David B</creatorcontrib><description>Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign variants. Here we used functional data on and mutations generated in real-time within a co-clinical trial framework to benchmark the predictive value of a three-part methodology. Our computational approach to variant classification incorporated hotspot analysis, three-dimensional molecular dynamics simulation, and sequence paralogy. prediction accurately distinguished functional from benign and mutants, yet drug sensitivity varied widely among activating mutant alleles. These results suggest that multifaceted modeling can inform patient accrual to MEK/ERK inhibitor clinical trials, but computational methods need to be paired with laboratory- and clinic-based efforts designed to unravel variabilities in drug response. SIGNIFICANCE: Leveraging prospective functional characterization of MEK1/2 mutants, it was found that hotspot analysis, molecular dynamics simulation, and sequence paralogy are complementary tools that can robustly prioritize variants for biologic, therapeutic, and clinical validation. .</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-20-0865</identifier><identifier>PMID: 32641410</identifier><language>eng</language><publisher>United States</publisher><subject>Benchmarking ; Computer Simulation ; Humans ; Mutation ; Neoplasms - genetics ; Prospective Studies</subject><ispartof>Cancer research (Chicago, Ill.), 2020-10, Vol.80 (19), p.4233-4243</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-a05bb51de32bc62d3f96c8f9590497624b1863e92247ba80f7cdf57a46bc3a013</citedby><cites>FETCH-LOGICAL-c477t-a05bb51de32bc62d3f96c8f9590497624b1863e92247ba80f7cdf57a46bc3a013</cites><orcidid>0000-0001-6122-6220 ; 0000-0002-8686-7160 ; 0000-0002-8581-6222 ; 0000-0001-6736-8246 ; 0000-0001-6956-1090 ; 0000-0001-5852-3419 ; 0000-0002-8307-654X ; 0000-0001-6443-0390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3356,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32641410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanrahan, Aphrothiti J</creatorcontrib><creatorcontrib>Sylvester, Brooke E</creatorcontrib><creatorcontrib>Chang, Matthew T</creatorcontrib><creatorcontrib>Elzein, Arijh</creatorcontrib><creatorcontrib>Gao, Jianjiong</creatorcontrib><creatorcontrib>Han, Weiwei</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Gao, Sizhi P</creatorcontrib><creatorcontrib>Gorelick, Alexander N</creatorcontrib><creatorcontrib>Jones, Alexis M</creatorcontrib><creatorcontrib>Kiliti, Amber J</creatorcontrib><creatorcontrib>Nissan, Moriah H</creatorcontrib><creatorcontrib>Nimura, Clare A</creatorcontrib><creatorcontrib>Poteshman, Abigail N</creatorcontrib><creatorcontrib>Yao, Zhan</creatorcontrib><creatorcontrib>Gao, Yijun</creatorcontrib><creatorcontrib>Hu, Wenhuo</creatorcontrib><creatorcontrib>Wise, Hannah C</creatorcontrib><creatorcontrib>Gavrila, Elena I</creatorcontrib><creatorcontrib>Shoushtari, Alexander N</creatorcontrib><creatorcontrib>Tiwari, Shakuntala</creatorcontrib><creatorcontrib>Viale, Agnes</creatorcontrib><creatorcontrib>Abdel-Wahab, Omar</creatorcontrib><creatorcontrib>Merghoub, Taha</creatorcontrib><creatorcontrib>Berger, Michael F</creatorcontrib><creatorcontrib>Rosen, Neal</creatorcontrib><creatorcontrib>Taylor, Barry S</creatorcontrib><creatorcontrib>Solit, David B</creatorcontrib><title>Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign variants. Here we used functional data on and mutations generated in real-time within a co-clinical trial framework to benchmark the predictive value of a three-part methodology. Our computational approach to variant classification incorporated hotspot analysis, three-dimensional molecular dynamics simulation, and sequence paralogy. prediction accurately distinguished functional from benign and mutants, yet drug sensitivity varied widely among activating mutant alleles. These results suggest that multifaceted modeling can inform patient accrual to MEK/ERK inhibitor clinical trials, but computational methods need to be paired with laboratory- and clinic-based efforts designed to unravel variabilities in drug response. SIGNIFICANCE: Leveraging prospective functional characterization of MEK1/2 mutants, it was found that hotspot analysis, molecular dynamics simulation, and sequence paralogy are complementary tools that can robustly prioritize variants for biologic, therapeutic, and clinical validation. .</description><subject>Benchmarking</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Prospective Studies</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd9OHCEUh0lTU1ftI7ThsjejwMAwc9Nku7pqXKuJ9pqcYZld2hmwwNjsE_jaZaNu9AZy4Hc-_nwIfaHkmFJRnxBC6kJwyY41uIKRgtSV-IAmVJR1ITkXH9Fkl9lHBzH-zqWgRHxC-yWrOOWUTNDTwjyaACvrVvhuE5MZIFmN56PTyXoHPZ7mYRNtxMnjH8bp9QDhDwaHLx2-s73VHs8DDOafz8unNqaMGm1cm4hPg81w3AU_4FuI0bhVLq_PrvD1mMCliK3DM3DahCO010EfzeeX-RD9mp_dzy6Kxc355Wy6KDSXMhVARNsKujQla3XFlmXXVLruGtEQ3siK8ZbWVWkaxrhsoSad1MtOSOBVq0sgtDxE35-5D2M7mKU2LgXo1UOw-Vkb5cGq9zvOrtXKPyopOBWNzIBvL4Dg_44mJjXYqE3fgzN-jIpxxvK3N6LKUfEc1cHHGEy3O4YStZWotoLUVpCaTX8qRtRWYu77-vaOu65Xa-V_RtybWw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hanrahan, Aphrothiti J</creator><creator>Sylvester, Brooke E</creator><creator>Chang, Matthew T</creator><creator>Elzein, Arijh</creator><creator>Gao, Jianjiong</creator><creator>Han, Weiwei</creator><creator>Liu, Ye</creator><creator>Xu, Dong</creator><creator>Gao, Sizhi P</creator><creator>Gorelick, Alexander N</creator><creator>Jones, Alexis M</creator><creator>Kiliti, Amber J</creator><creator>Nissan, Moriah H</creator><creator>Nimura, Clare A</creator><creator>Poteshman, Abigail N</creator><creator>Yao, Zhan</creator><creator>Gao, Yijun</creator><creator>Hu, Wenhuo</creator><creator>Wise, Hannah C</creator><creator>Gavrila, Elena I</creator><creator>Shoushtari, Alexander N</creator><creator>Tiwari, Shakuntala</creator><creator>Viale, Agnes</creator><creator>Abdel-Wahab, Omar</creator><creator>Merghoub, Taha</creator><creator>Berger, Michael F</creator><creator>Rosen, Neal</creator><creator>Taylor, Barry S</creator><creator>Solit, David B</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6122-6220</orcidid><orcidid>https://orcid.org/0000-0002-8686-7160</orcidid><orcidid>https://orcid.org/0000-0002-8581-6222</orcidid><orcidid>https://orcid.org/0000-0001-6736-8246</orcidid><orcidid>https://orcid.org/0000-0001-6956-1090</orcidid><orcidid>https://orcid.org/0000-0001-5852-3419</orcidid><orcidid>https://orcid.org/0000-0002-8307-654X</orcidid><orcidid>https://orcid.org/0000-0001-6443-0390</orcidid></search><sort><creationdate>20201001</creationdate><title>Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer</title><author>Hanrahan, Aphrothiti J ; Sylvester, Brooke E ; Chang, Matthew T ; Elzein, Arijh ; Gao, Jianjiong ; Han, Weiwei ; Liu, Ye ; Xu, Dong ; Gao, Sizhi P ; Gorelick, Alexander N ; Jones, Alexis M ; Kiliti, Amber J ; Nissan, Moriah H ; Nimura, Clare A ; Poteshman, Abigail N ; Yao, Zhan ; Gao, Yijun ; Hu, Wenhuo ; Wise, Hannah C ; Gavrila, Elena I ; Shoushtari, Alexander N ; Tiwari, Shakuntala ; Viale, Agnes ; Abdel-Wahab, Omar ; Merghoub, Taha ; Berger, Michael F ; Rosen, Neal ; Taylor, Barry S ; Solit, David B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-a05bb51de32bc62d3f96c8f9590497624b1863e92247ba80f7cdf57a46bc3a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benchmarking</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Prospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanrahan, Aphrothiti J</creatorcontrib><creatorcontrib>Sylvester, Brooke E</creatorcontrib><creatorcontrib>Chang, Matthew T</creatorcontrib><creatorcontrib>Elzein, Arijh</creatorcontrib><creatorcontrib>Gao, Jianjiong</creatorcontrib><creatorcontrib>Han, Weiwei</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Gao, Sizhi P</creatorcontrib><creatorcontrib>Gorelick, Alexander N</creatorcontrib><creatorcontrib>Jones, Alexis M</creatorcontrib><creatorcontrib>Kiliti, Amber J</creatorcontrib><creatorcontrib>Nissan, Moriah H</creatorcontrib><creatorcontrib>Nimura, Clare A</creatorcontrib><creatorcontrib>Poteshman, Abigail N</creatorcontrib><creatorcontrib>Yao, Zhan</creatorcontrib><creatorcontrib>Gao, Yijun</creatorcontrib><creatorcontrib>Hu, Wenhuo</creatorcontrib><creatorcontrib>Wise, Hannah C</creatorcontrib><creatorcontrib>Gavrila, Elena I</creatorcontrib><creatorcontrib>Shoushtari, Alexander N</creatorcontrib><creatorcontrib>Tiwari, Shakuntala</creatorcontrib><creatorcontrib>Viale, Agnes</creatorcontrib><creatorcontrib>Abdel-Wahab, Omar</creatorcontrib><creatorcontrib>Merghoub, Taha</creatorcontrib><creatorcontrib>Berger, Michael F</creatorcontrib><creatorcontrib>Rosen, Neal</creatorcontrib><creatorcontrib>Taylor, Barry S</creatorcontrib><creatorcontrib>Solit, David B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanrahan, Aphrothiti J</au><au>Sylvester, Brooke E</au><au>Chang, Matthew T</au><au>Elzein, Arijh</au><au>Gao, Jianjiong</au><au>Han, Weiwei</au><au>Liu, Ye</au><au>Xu, Dong</au><au>Gao, Sizhi P</au><au>Gorelick, Alexander N</au><au>Jones, Alexis M</au><au>Kiliti, Amber J</au><au>Nissan, Moriah H</au><au>Nimura, Clare A</au><au>Poteshman, Abigail N</au><au>Yao, Zhan</au><au>Gao, Yijun</au><au>Hu, Wenhuo</au><au>Wise, Hannah C</au><au>Gavrila, Elena I</au><au>Shoushtari, Alexander N</au><au>Tiwari, Shakuntala</au><au>Viale, Agnes</au><au>Abdel-Wahab, Omar</au><au>Merghoub, Taha</au><au>Berger, Michael F</au><au>Rosen, Neal</au><au>Taylor, Barry S</au><au>Solit, David B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>80</volume><issue>19</issue><spage>4233</spage><epage>4243</epage><pages>4233-4243</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign variants. Here we used functional data on and mutations generated in real-time within a co-clinical trial framework to benchmark the predictive value of a three-part methodology. Our computational approach to variant classification incorporated hotspot analysis, three-dimensional molecular dynamics simulation, and sequence paralogy. prediction accurately distinguished functional from benign and mutants, yet drug sensitivity varied widely among activating mutant alleles. These results suggest that multifaceted modeling can inform patient accrual to MEK/ERK inhibitor clinical trials, but computational methods need to be paired with laboratory- and clinic-based efforts designed to unravel variabilities in drug response. SIGNIFICANCE: Leveraging prospective functional characterization of MEK1/2 mutants, it was found that hotspot analysis, molecular dynamics simulation, and sequence paralogy are complementary tools that can robustly prioritize variants for biologic, therapeutic, and clinical validation. .</abstract><cop>United States</cop><pmid>32641410</pmid><doi>10.1158/0008-5472.can-20-0865</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6122-6220</orcidid><orcidid>https://orcid.org/0000-0002-8686-7160</orcidid><orcidid>https://orcid.org/0000-0002-8581-6222</orcidid><orcidid>https://orcid.org/0000-0001-6736-8246</orcidid><orcidid>https://orcid.org/0000-0001-6956-1090</orcidid><orcidid>https://orcid.org/0000-0001-5852-3419</orcidid><orcidid>https://orcid.org/0000-0002-8307-654X</orcidid><orcidid>https://orcid.org/0000-0001-6443-0390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-5472
ispartof Cancer research (Chicago, Ill.), 2020-10, Vol.80 (19), p.4233-4243
issn 0008-5472
1538-7445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541597
source MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals
subjects Benchmarking
Computer Simulation
Humans
Mutation
Neoplasms - genetics
Prospective Studies
title Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Systematic%20Functional%20Analysis%20to%20Benchmark%20an%20In%20Silico%20Framework%20Distinguishes%20Driver%20from%20Passenger%20MEK%20Mutants%20in%20Cancer&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Hanrahan,%20Aphrothiti%20J&rft.date=2020-10-01&rft.volume=80&rft.issue=19&rft.spage=4233&rft.epage=4243&rft.pages=4233-4243&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.can-20-0865&rft_dat=%3Cproquest_pubme%3E2422008956%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422008956&rft_id=info:pmid/32641410&rfr_iscdi=true