Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer
Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign varian...
Gespeichert in:
Veröffentlicht in: | Cancer research (Chicago, Ill.) Ill.), 2020-10, Vol.80 (19), p.4233-4243 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4243 |
---|---|
container_issue | 19 |
container_start_page | 4233 |
container_title | Cancer research (Chicago, Ill.) |
container_volume | 80 |
creator | Hanrahan, Aphrothiti J Sylvester, Brooke E Chang, Matthew T Elzein, Arijh Gao, Jianjiong Han, Weiwei Liu, Ye Xu, Dong Gao, Sizhi P Gorelick, Alexander N Jones, Alexis M Kiliti, Amber J Nissan, Moriah H Nimura, Clare A Poteshman, Abigail N Yao, Zhan Gao, Yijun Hu, Wenhuo Wise, Hannah C Gavrila, Elena I Shoushtari, Alexander N Tiwari, Shakuntala Viale, Agnes Abdel-Wahab, Omar Merghoub, Taha Berger, Michael F Rosen, Neal Taylor, Barry S Solit, David B |
description | Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign variants. Here we used functional data on
and
mutations generated in real-time within a co-clinical trial framework to benchmark the predictive value of a three-part
methodology. Our computational approach to variant classification incorporated hotspot analysis, three-dimensional molecular dynamics simulation, and sequence paralogy.
prediction accurately distinguished functional from benign
and
mutants, yet drug sensitivity varied widely among activating mutant alleles. These results suggest that multifaceted
modeling can inform patient accrual to MEK/ERK inhibitor clinical trials, but computational methods need to be paired with laboratory- and clinic-based efforts designed to unravel variabilities in drug response. SIGNIFICANCE: Leveraging prospective functional characterization of MEK1/2 mutants, it was found that hotspot analysis, molecular dynamics simulation, and sequence paralogy are complementary tools that can robustly prioritize variants for biologic, therapeutic, and clinical validation.
. |
doi_str_mv | 10.1158/0008-5472.can-20-0865 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2422008956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-a05bb51de32bc62d3f96c8f9590497624b1863e92247ba80f7cdf57a46bc3a013</originalsourceid><addsrcrecordid>eNpVkd9OHCEUh0lTU1ftI7ThsjejwMAwc9Nku7pqXKuJ9pqcYZld2hmwwNjsE_jaZaNu9AZy4Hc-_nwIfaHkmFJRnxBC6kJwyY41uIKRgtSV-IAmVJR1ITkXH9Fkl9lHBzH-zqWgRHxC-yWrOOWUTNDTwjyaACvrVvhuE5MZIFmN56PTyXoHPZ7mYRNtxMnjH8bp9QDhDwaHLx2-s73VHs8DDOafz8unNqaMGm1cm4hPg81w3AU_4FuI0bhVLq_PrvD1mMCliK3DM3DahCO010EfzeeX-RD9mp_dzy6Kxc355Wy6KDSXMhVARNsKujQla3XFlmXXVLruGtEQ3siK8ZbWVWkaxrhsoSad1MtOSOBVq0sgtDxE35-5D2M7mKU2LgXo1UOw-Vkb5cGq9zvOrtXKPyopOBWNzIBvL4Dg_44mJjXYqE3fgzN-jIpxxvK3N6LKUfEc1cHHGEy3O4YStZWotoLUVpCaTX8qRtRWYu77-vaOu65Xa-V_RtybWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422008956</pqid></control><display><type>article</type><title>Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer</title><source>MEDLINE</source><source>American Association for Cancer Research</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hanrahan, Aphrothiti J ; Sylvester, Brooke E ; Chang, Matthew T ; Elzein, Arijh ; Gao, Jianjiong ; Han, Weiwei ; Liu, Ye ; Xu, Dong ; Gao, Sizhi P ; Gorelick, Alexander N ; Jones, Alexis M ; Kiliti, Amber J ; Nissan, Moriah H ; Nimura, Clare A ; Poteshman, Abigail N ; Yao, Zhan ; Gao, Yijun ; Hu, Wenhuo ; Wise, Hannah C ; Gavrila, Elena I ; Shoushtari, Alexander N ; Tiwari, Shakuntala ; Viale, Agnes ; Abdel-Wahab, Omar ; Merghoub, Taha ; Berger, Michael F ; Rosen, Neal ; Taylor, Barry S ; Solit, David B</creator><creatorcontrib>Hanrahan, Aphrothiti J ; Sylvester, Brooke E ; Chang, Matthew T ; Elzein, Arijh ; Gao, Jianjiong ; Han, Weiwei ; Liu, Ye ; Xu, Dong ; Gao, Sizhi P ; Gorelick, Alexander N ; Jones, Alexis M ; Kiliti, Amber J ; Nissan, Moriah H ; Nimura, Clare A ; Poteshman, Abigail N ; Yao, Zhan ; Gao, Yijun ; Hu, Wenhuo ; Wise, Hannah C ; Gavrila, Elena I ; Shoushtari, Alexander N ; Tiwari, Shakuntala ; Viale, Agnes ; Abdel-Wahab, Omar ; Merghoub, Taha ; Berger, Michael F ; Rosen, Neal ; Taylor, Barry S ; Solit, David B</creatorcontrib><description>Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign variants. Here we used functional data on
and
mutations generated in real-time within a co-clinical trial framework to benchmark the predictive value of a three-part
methodology. Our computational approach to variant classification incorporated hotspot analysis, three-dimensional molecular dynamics simulation, and sequence paralogy.
prediction accurately distinguished functional from benign
and
mutants, yet drug sensitivity varied widely among activating mutant alleles. These results suggest that multifaceted
modeling can inform patient accrual to MEK/ERK inhibitor clinical trials, but computational methods need to be paired with laboratory- and clinic-based efforts designed to unravel variabilities in drug response. SIGNIFICANCE: Leveraging prospective functional characterization of MEK1/2 mutants, it was found that hotspot analysis, molecular dynamics simulation, and sequence paralogy are complementary tools that can robustly prioritize variants for biologic, therapeutic, and clinical validation.
.</description><identifier>ISSN: 0008-5472</identifier><identifier>EISSN: 1538-7445</identifier><identifier>DOI: 10.1158/0008-5472.can-20-0865</identifier><identifier>PMID: 32641410</identifier><language>eng</language><publisher>United States</publisher><subject>Benchmarking ; Computer Simulation ; Humans ; Mutation ; Neoplasms - genetics ; Prospective Studies</subject><ispartof>Cancer research (Chicago, Ill.), 2020-10, Vol.80 (19), p.4233-4243</ispartof><rights>2020 American Association for Cancer Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-a05bb51de32bc62d3f96c8f9590497624b1863e92247ba80f7cdf57a46bc3a013</citedby><cites>FETCH-LOGICAL-c477t-a05bb51de32bc62d3f96c8f9590497624b1863e92247ba80f7cdf57a46bc3a013</cites><orcidid>0000-0001-6122-6220 ; 0000-0002-8686-7160 ; 0000-0002-8581-6222 ; 0000-0001-6736-8246 ; 0000-0001-6956-1090 ; 0000-0001-5852-3419 ; 0000-0002-8307-654X ; 0000-0001-6443-0390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3356,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32641410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanrahan, Aphrothiti J</creatorcontrib><creatorcontrib>Sylvester, Brooke E</creatorcontrib><creatorcontrib>Chang, Matthew T</creatorcontrib><creatorcontrib>Elzein, Arijh</creatorcontrib><creatorcontrib>Gao, Jianjiong</creatorcontrib><creatorcontrib>Han, Weiwei</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Gao, Sizhi P</creatorcontrib><creatorcontrib>Gorelick, Alexander N</creatorcontrib><creatorcontrib>Jones, Alexis M</creatorcontrib><creatorcontrib>Kiliti, Amber J</creatorcontrib><creatorcontrib>Nissan, Moriah H</creatorcontrib><creatorcontrib>Nimura, Clare A</creatorcontrib><creatorcontrib>Poteshman, Abigail N</creatorcontrib><creatorcontrib>Yao, Zhan</creatorcontrib><creatorcontrib>Gao, Yijun</creatorcontrib><creatorcontrib>Hu, Wenhuo</creatorcontrib><creatorcontrib>Wise, Hannah C</creatorcontrib><creatorcontrib>Gavrila, Elena I</creatorcontrib><creatorcontrib>Shoushtari, Alexander N</creatorcontrib><creatorcontrib>Tiwari, Shakuntala</creatorcontrib><creatorcontrib>Viale, Agnes</creatorcontrib><creatorcontrib>Abdel-Wahab, Omar</creatorcontrib><creatorcontrib>Merghoub, Taha</creatorcontrib><creatorcontrib>Berger, Michael F</creatorcontrib><creatorcontrib>Rosen, Neal</creatorcontrib><creatorcontrib>Taylor, Barry S</creatorcontrib><creatorcontrib>Solit, David B</creatorcontrib><title>Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer</title><title>Cancer research (Chicago, Ill.)</title><addtitle>Cancer Res</addtitle><description>Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign variants. Here we used functional data on
and
mutations generated in real-time within a co-clinical trial framework to benchmark the predictive value of a three-part
methodology. Our computational approach to variant classification incorporated hotspot analysis, three-dimensional molecular dynamics simulation, and sequence paralogy.
prediction accurately distinguished functional from benign
and
mutants, yet drug sensitivity varied widely among activating mutant alleles. These results suggest that multifaceted
modeling can inform patient accrual to MEK/ERK inhibitor clinical trials, but computational methods need to be paired with laboratory- and clinic-based efforts designed to unravel variabilities in drug response. SIGNIFICANCE: Leveraging prospective functional characterization of MEK1/2 mutants, it was found that hotspot analysis, molecular dynamics simulation, and sequence paralogy are complementary tools that can robustly prioritize variants for biologic, therapeutic, and clinical validation.
.</description><subject>Benchmarking</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Mutation</subject><subject>Neoplasms - genetics</subject><subject>Prospective Studies</subject><issn>0008-5472</issn><issn>1538-7445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkd9OHCEUh0lTU1ftI7ThsjejwMAwc9Nku7pqXKuJ9pqcYZld2hmwwNjsE_jaZaNu9AZy4Hc-_nwIfaHkmFJRnxBC6kJwyY41uIKRgtSV-IAmVJR1ITkXH9Fkl9lHBzH-zqWgRHxC-yWrOOWUTNDTwjyaACvrVvhuE5MZIFmN56PTyXoHPZ7mYRNtxMnjH8bp9QDhDwaHLx2-s73VHs8DDOafz8unNqaMGm1cm4hPg81w3AU_4FuI0bhVLq_PrvD1mMCliK3DM3DahCO010EfzeeX-RD9mp_dzy6Kxc355Wy6KDSXMhVARNsKujQla3XFlmXXVLruGtEQ3siK8ZbWVWkaxrhsoSad1MtOSOBVq0sgtDxE35-5D2M7mKU2LgXo1UOw-Vkb5cGq9zvOrtXKPyopOBWNzIBvL4Dg_44mJjXYqE3fgzN-jIpxxvK3N6LKUfEc1cHHGEy3O4YStZWotoLUVpCaTX8qRtRWYu77-vaOu65Xa-V_RtybWw</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Hanrahan, Aphrothiti J</creator><creator>Sylvester, Brooke E</creator><creator>Chang, Matthew T</creator><creator>Elzein, Arijh</creator><creator>Gao, Jianjiong</creator><creator>Han, Weiwei</creator><creator>Liu, Ye</creator><creator>Xu, Dong</creator><creator>Gao, Sizhi P</creator><creator>Gorelick, Alexander N</creator><creator>Jones, Alexis M</creator><creator>Kiliti, Amber J</creator><creator>Nissan, Moriah H</creator><creator>Nimura, Clare A</creator><creator>Poteshman, Abigail N</creator><creator>Yao, Zhan</creator><creator>Gao, Yijun</creator><creator>Hu, Wenhuo</creator><creator>Wise, Hannah C</creator><creator>Gavrila, Elena I</creator><creator>Shoushtari, Alexander N</creator><creator>Tiwari, Shakuntala</creator><creator>Viale, Agnes</creator><creator>Abdel-Wahab, Omar</creator><creator>Merghoub, Taha</creator><creator>Berger, Michael F</creator><creator>Rosen, Neal</creator><creator>Taylor, Barry S</creator><creator>Solit, David B</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6122-6220</orcidid><orcidid>https://orcid.org/0000-0002-8686-7160</orcidid><orcidid>https://orcid.org/0000-0002-8581-6222</orcidid><orcidid>https://orcid.org/0000-0001-6736-8246</orcidid><orcidid>https://orcid.org/0000-0001-6956-1090</orcidid><orcidid>https://orcid.org/0000-0001-5852-3419</orcidid><orcidid>https://orcid.org/0000-0002-8307-654X</orcidid><orcidid>https://orcid.org/0000-0001-6443-0390</orcidid></search><sort><creationdate>20201001</creationdate><title>Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer</title><author>Hanrahan, Aphrothiti J ; Sylvester, Brooke E ; Chang, Matthew T ; Elzein, Arijh ; Gao, Jianjiong ; Han, Weiwei ; Liu, Ye ; Xu, Dong ; Gao, Sizhi P ; Gorelick, Alexander N ; Jones, Alexis M ; Kiliti, Amber J ; Nissan, Moriah H ; Nimura, Clare A ; Poteshman, Abigail N ; Yao, Zhan ; Gao, Yijun ; Hu, Wenhuo ; Wise, Hannah C ; Gavrila, Elena I ; Shoushtari, Alexander N ; Tiwari, Shakuntala ; Viale, Agnes ; Abdel-Wahab, Omar ; Merghoub, Taha ; Berger, Michael F ; Rosen, Neal ; Taylor, Barry S ; Solit, David B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-a05bb51de32bc62d3f96c8f9590497624b1863e92247ba80f7cdf57a46bc3a013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Benchmarking</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Mutation</topic><topic>Neoplasms - genetics</topic><topic>Prospective Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanrahan, Aphrothiti J</creatorcontrib><creatorcontrib>Sylvester, Brooke E</creatorcontrib><creatorcontrib>Chang, Matthew T</creatorcontrib><creatorcontrib>Elzein, Arijh</creatorcontrib><creatorcontrib>Gao, Jianjiong</creatorcontrib><creatorcontrib>Han, Weiwei</creatorcontrib><creatorcontrib>Liu, Ye</creatorcontrib><creatorcontrib>Xu, Dong</creatorcontrib><creatorcontrib>Gao, Sizhi P</creatorcontrib><creatorcontrib>Gorelick, Alexander N</creatorcontrib><creatorcontrib>Jones, Alexis M</creatorcontrib><creatorcontrib>Kiliti, Amber J</creatorcontrib><creatorcontrib>Nissan, Moriah H</creatorcontrib><creatorcontrib>Nimura, Clare A</creatorcontrib><creatorcontrib>Poteshman, Abigail N</creatorcontrib><creatorcontrib>Yao, Zhan</creatorcontrib><creatorcontrib>Gao, Yijun</creatorcontrib><creatorcontrib>Hu, Wenhuo</creatorcontrib><creatorcontrib>Wise, Hannah C</creatorcontrib><creatorcontrib>Gavrila, Elena I</creatorcontrib><creatorcontrib>Shoushtari, Alexander N</creatorcontrib><creatorcontrib>Tiwari, Shakuntala</creatorcontrib><creatorcontrib>Viale, Agnes</creatorcontrib><creatorcontrib>Abdel-Wahab, Omar</creatorcontrib><creatorcontrib>Merghoub, Taha</creatorcontrib><creatorcontrib>Berger, Michael F</creatorcontrib><creatorcontrib>Rosen, Neal</creatorcontrib><creatorcontrib>Taylor, Barry S</creatorcontrib><creatorcontrib>Solit, David B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer research (Chicago, Ill.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanrahan, Aphrothiti J</au><au>Sylvester, Brooke E</au><au>Chang, Matthew T</au><au>Elzein, Arijh</au><au>Gao, Jianjiong</au><au>Han, Weiwei</au><au>Liu, Ye</au><au>Xu, Dong</au><au>Gao, Sizhi P</au><au>Gorelick, Alexander N</au><au>Jones, Alexis M</au><au>Kiliti, Amber J</au><au>Nissan, Moriah H</au><au>Nimura, Clare A</au><au>Poteshman, Abigail N</au><au>Yao, Zhan</au><au>Gao, Yijun</au><au>Hu, Wenhuo</au><au>Wise, Hannah C</au><au>Gavrila, Elena I</au><au>Shoushtari, Alexander N</au><au>Tiwari, Shakuntala</au><au>Viale, Agnes</au><au>Abdel-Wahab, Omar</au><au>Merghoub, Taha</au><au>Berger, Michael F</au><au>Rosen, Neal</au><au>Taylor, Barry S</au><au>Solit, David B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer</atitle><jtitle>Cancer research (Chicago, Ill.)</jtitle><addtitle>Cancer Res</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>80</volume><issue>19</issue><spage>4233</spage><epage>4243</epage><pages>4233-4243</pages><issn>0008-5472</issn><eissn>1538-7445</eissn><abstract>Despite significant advances in cancer precision medicine, a significant hurdle to its broader adoption remains the multitude of variants of unknown significance identified by clinical tumor sequencing and the lack of biologically validated methods to distinguish between functional and benign variants. Here we used functional data on
and
mutations generated in real-time within a co-clinical trial framework to benchmark the predictive value of a three-part
methodology. Our computational approach to variant classification incorporated hotspot analysis, three-dimensional molecular dynamics simulation, and sequence paralogy.
prediction accurately distinguished functional from benign
and
mutants, yet drug sensitivity varied widely among activating mutant alleles. These results suggest that multifaceted
modeling can inform patient accrual to MEK/ERK inhibitor clinical trials, but computational methods need to be paired with laboratory- and clinic-based efforts designed to unravel variabilities in drug response. SIGNIFICANCE: Leveraging prospective functional characterization of MEK1/2 mutants, it was found that hotspot analysis, molecular dynamics simulation, and sequence paralogy are complementary tools that can robustly prioritize variants for biologic, therapeutic, and clinical validation.
.</abstract><cop>United States</cop><pmid>32641410</pmid><doi>10.1158/0008-5472.can-20-0865</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6122-6220</orcidid><orcidid>https://orcid.org/0000-0002-8686-7160</orcidid><orcidid>https://orcid.org/0000-0002-8581-6222</orcidid><orcidid>https://orcid.org/0000-0001-6736-8246</orcidid><orcidid>https://orcid.org/0000-0001-6956-1090</orcidid><orcidid>https://orcid.org/0000-0001-5852-3419</orcidid><orcidid>https://orcid.org/0000-0002-8307-654X</orcidid><orcidid>https://orcid.org/0000-0001-6443-0390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-5472 |
ispartof | Cancer research (Chicago, Ill.), 2020-10, Vol.80 (19), p.4233-4243 |
issn | 0008-5472 1538-7445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7541597 |
source | MEDLINE; American Association for Cancer Research; EZB-FREE-00999 freely available EZB journals |
subjects | Benchmarking Computer Simulation Humans Mutation Neoplasms - genetics Prospective Studies |
title | Leveraging Systematic Functional Analysis to Benchmark an In Silico Framework Distinguishes Driver from Passenger MEK Mutants in Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A14%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Systematic%20Functional%20Analysis%20to%20Benchmark%20an%20In%20Silico%20Framework%20Distinguishes%20Driver%20from%20Passenger%20MEK%20Mutants%20in%20Cancer&rft.jtitle=Cancer%20research%20(Chicago,%20Ill.)&rft.au=Hanrahan,%20Aphrothiti%20J&rft.date=2020-10-01&rft.volume=80&rft.issue=19&rft.spage=4233&rft.epage=4243&rft.pages=4233-4243&rft.issn=0008-5472&rft.eissn=1538-7445&rft_id=info:doi/10.1158/0008-5472.can-20-0865&rft_dat=%3Cproquest_pubme%3E2422008956%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422008956&rft_id=info:pmid/32641410&rfr_iscdi=true |